25 research outputs found

    Whipple's disease: rare disorder and late diagnosis

    Full text link
    Whipple's disease is a rare systemic infectious disorder caused by the bacterium Tropheryma whipplei. We report the case of a 61-year-old male patient who presented to emergency room complaining of asthenia, arthralgia, anorexia, articular complaints intermittent diarrhea, and a 10-kg weight loss in one year. Laboratory tests showed the following results: Hb = 7.5 g/dL, albumin = 2.5 mg/dL, weight = 50.3 kg (BMI 17.4 kg/m²). Upper gastrointestinal endoscopy revealed areas of focal enanthema in the duodenum. An endoscopic biopsy was suggestive of Whipple's disease. Diagnosis was confirmed based on a positive serum polymerase chain reaction. Treatment was initiated with intravenous ceftriaxone followed by oral trimethoprim-sulfamethoxazole. After one year of treatment, the patient was asymptomatic, with Hb = 13.5 g/dL, serum albumin = 5.3 mg/dL, and weight = 70 kg (BMI 24.2 kg/m²). Whipple's disease should be considered a differential diagnosis in patients with prolonged constitutional and/or gastrointestinal symptoms. Appropriate antibiotic treatment improves the quality of life of patients

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics
    corecore