46 research outputs found

    High-Anxious Individuals Show Increased Chronic Stress Burden, Decreased Protective Immunity, and Increased Cancer Progression in a Mouse Model of Squamous Cell Carcinoma

    Get PDF
    In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2–3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED), 3 times/week, 10-weeks). The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome), and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th), cytolytic (CTL), and regulatory (Treg) T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF) by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden), increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression), lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity), and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis). These results suggest that the deleterious effects of high trait anxiety could be: exacerbated by life-stressors, accentuated by the stress of cancer diagnosis/treatment, and mediate increased tumor progression and/or metastasis. Therefore, it may be beneficial to investigate the use of chemotherapy-compatible anxiolytic treatments immediately following cancer diagnosis, and during cancer treatment/survivorship

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Management of severe paediatric malaria in resource-limited settings

    Get PDF

    Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence

    Get PDF
    Intelligence is associated with important economic and health-related life outcomes1. Despite intelligence having substantial heritability2 (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered3,4,5. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10−8) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10−6), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10−6). Despite the well-known difference in twin-based heritability2 for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (rg = 0.89, LD score regression P = 5.4 × 10−29). These findings provide new insight into the genetic architecture of intelligence

    BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation.

    No full text
    The enzyme BirA is a key reagent because of its ability to biotinylate proteins at a specific residue in a recognition sequence. We report a rapid, efficient, and economical method for the production, purification, and application of this enzyme. The method is easily scaled up and the protein produced is of high purity and can be stored for many months with retention of activity. We have used this enzyme to biotinylate the C termini of membrane proteins, allowing these proteins to be tetramerized by binding to streptavidin. Because of the specificity of the biotinylation at the C terminus, the orientation of the membrane proteins on the streptavidin is equivalent to that of the native protein on the cell surface. These tetrameric proteins can be used to study protein receptor-ligand interactions at the cell surface, and site-specific biotinylation can be used to study proteins in vitro using a defined orientation

    TCR binding to peptide-MHC stabilizes a flexible recognition interface.

    Get PDF
    The binding of TCRs to their peptide-MHC ligands is characterized by a low affinity, slow kinetics, and a high degree of cross-reactivity. Here, we report the results of a kinetic and thermodynamic analysis of two TCRs binding to their peptide-MHC ligands, which reveal two striking features. First, significant activation energy barriers must be overcome during both association and dissociation, suggesting that conformational adjustments are required. Second, the low affinity of binding is a consequence of highly unfavorable entropic effects, indicative of a substantial reduction in disorder upon binding. This is evidence that the TCR and/or peptide-MHC have flexible binding surfaces that are stabilized upon binding. Such conformational flexibility, which may also be a feature of primary antibodies, is likely to contribute to cross-reactivity in antigen recognition

    Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E.

    No full text
    The crystal structure of the nonclassical human class lb MHC molecule HLA-E has been determined in complex with a prototypic ligand, the nonamer peptide (VMAPRTVLL), derived from the highly conserved residues 3-11 of the human MHC class la leader sequence. The mode of peptide binding retains some of the standard features observed in MHC class la complexes, but novel features imply that HLA-E has evolved to mediate specific binding to a tightly defined set of almost identical hydrophobic peptides from the highly conserved class l leader sequences. These molecular adaptations make HLA-E a rigorous checkpoint at the cell surface reporting on the integrity of the antigen processing pathway to CD94/NKG2 receptor-bearing natural killer cells

    Assembly and crystallization of the complex between the human T cell coreceptor CD8alpha homodimer and HLA-A2.

    No full text
    A strategy for overexpression in Escherichia coli of the extracellular immunoglobulin domain of human CD8alpha was devised using codon usage alterations in the 5' region of the gene, designed so as to prevent the formation of secondary structures in the mRNA. A fragment of CD8alpha, comprising residues 1-120 of the mature protein, excluding the signal peptide and the membrane-proximal stalk region, was recovered from bacterial inclusion bodies and refolded to produce a single species of homodimeric, soluble receptor. HLA-A2 heavy chain, beta2-microglobulin and a synthetic peptide antigen corresponding to the pol epitope from HIV-1 were also expressed in E. coli, refolded and purified. CD8alpha/HLA-A2 complexes were formed in solution and by co-crystallization with a stoichiometry of one CD8alpha alpha dimer to one HLA-A2-peptide unit

    T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics.

    No full text
    The T cell surface glycoprotein CD8 enhances T cell antigen recognition by binding to MHC class I molecules. We show that human CD8 alphaalpha binds to the MHC class I molecule HLA-A2 with an extremely low affinity (Kd approximately 0.2 mM at 37 degrees C) and with kinetics that are between 2 and 3 orders of magnitude faster than reported for T cell receptor/peptide-MHC interactions. Furthermore, CD8 alphaalpha had no detectable effect on a T cell receptor (TCR) binding to the same peptide-MHC class I complex. These binding properties provide an explanation as to why the CD8/MHC class I interaction is unable to initiate cell-cell adhesion and how it can enhance TCR recognition without interfering with its specificity
    corecore