9 research outputs found

    Treating cisplatin-resistant cancer: a systematic analysis of oxaliplatin or paclitaxel salvage chemotherapy

    Get PDF
    Objective: To examine the pre-clinical and clinical evidence for the use of oxaliplatin or paclitaxel salvage chemotherapy in patients with cisplatin-resistant cancer. Methods: Medline was searched for 1) Cell models of acquired resistance reporting cisplatin, oxaliplatin and paclitaxel sensitivities and 2) Clinical trials of single agent oxaliplatin or paclitaxel salvage therapy for cisplatin/carboplatin-resistant ovarian cancer. Results: Oxaliplatin - Oxaliplatin is widely regarded as being active in cisplatin-resistant cancer. In contrast, data in cell models suggests that there is cross-resistance between cisplatin and oxaliplatin in cellular models with resistance levels which reflect clinical resistance (<10 fold). Oxaliplatin as a single agent had a poor response rate in patients with cisplatin-resistant ovarian cancer (8%, n=91). Oxaliplatin performed better in combination with other agents for the treatment of platinum-resistant cancer suggesting that the benefit of oxaliplatin may lie in its more favourable toxicity and ability to be combined with other drugs rather than an underlying activity in cisplatin resistance. Oxaliplatin therefore should not be considered broadly active in cisplatin-resistant cancer. Paclitaxel – Cellular data suggests that paclitaxel is active in cisplatin-resistant cancer. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel. Paclitaxel as a single agent had a response rate of 22% in patients with platinum-resistant ovarian cancer (n = 1918), a significant increase from the response of oxaliplatin (p<0.01). Paclitaxel-resistant cells were also sensitive to cisplatin, suggesting that alternating between agents may be beneficial. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously received paclitaxel had an improved response rate of 35.3% n=232 (p<0.01), suggesting that pre-treatment with paclitaxel improves the response of salvage paclitaxel therapy. Conclusions: Cellular models reflect the resistance observed in the clinic as the cross resistant agent oxaliplatin has a lower response rate compared to the non-cross resistant agent paclitaxel in cisplatin-resistant ovarian cancer. Alternating therapy with cisplatin and paclitaxel may therefore lead to an improved response rate in ovarian cancer

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    Epidemiology of Common Headache Disorders

    No full text
    corecore