216 research outputs found

    Effectiveness of different methods of health education: A comparative assessment in a scientific conference

    Get PDF
    ABSTRACT: BACKGROUND: Every individual mode of health education has its own merits, drawbacks as well as their own sphere of effectiveness. A specific mode of communication is more useful in a specific setting on a specific group than others. To search for optimum mode of communication for a specific audience is a major area of research in health education. The issue of imparting health education to a gathering of educated people, representing different fields of knowledge has remained a relatively less lighted aspect of health education research. In this backdrop this study was initiated for making a comparative assessment of different methods of dissemination of health education among educated people. METHODS: A cross-sectional interviewer administered questionnaire survey was conducted involving 142 randomly selected subjects during the last session of a five-day conference having health as main theme when the opinion of the delegates regarding different communication methods was asked for. Collected data was analyzed not only to find out the optimum mode of education dissemination in such a setting but also to find the contribution of different factors in the preferences of the study subjects. RESULTS: The participants opted more (60%) for focused programs of smaller audience (sectional program). In both broad area (main program) and focused area programs (sectional), the participants preferred lectures (62% and 65.7% respectively). Specific topics were preferred both in lectures (67.6%) and symposia (57.7%). In the exhibition, exhibits seemed to be more attractive (62%) than the posters. Qualification has emerged to be a contributing factor in peoples' choice towards sectional programme and also in their affinity to symposia. Increased age was a significant contributor in participants' preference towards specific topics. Physical barriers of communication appeared to be a problem in the main program as well as in the exhibition. Lack of coherence among the speakers was reported (69%) to be a major reason for which symposia was not preferred. CONCLUSION: This study concluded that while planning for health education dissemination in an educated group a focused programme should be formulated in small groups preferably in the form of lectures on specific topics, more so while dealing with participants of higher age group having higher educational qualification

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Plasma Proteomic Profiling in HIV-1 Infected Methamphetamine Abusers

    Get PDF
    We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins

    AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two <it>Plasmodium falciparum </it>antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated.</p> <p>Methods</p> <p>Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline.</p> <p>Results</p> <p>AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses.</p> <p>Conclusion</p> <p>Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.</p

    Population mechanics: A mathematical framework to study T cell homeostasis

    Get PDF
    Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity

    Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-κB in Delayed Loss of Small Dorsal Root Ganglion Neurons upon Sciatic Nerve Transection in Rats

    Get PDF
    BACKGROUND:Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. METHODOLOGY/PRINCIPAL FINDINGS:Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. CONCLUSIONS/SIGNIFICANCE:Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury
    corecore