6 research outputs found

    Evolutionary change in the construction of the nursery environment when parents are prevented from caring for their young directly

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData Availability: All data, code for image analysis and statistical analysis are available in the SI Appendix.Parental care can be partitioned into traits that involve direct engagement with offspring and traits that are expressed as an extended phenotype and influence the developmental environment, such as constructing a nursery. Here, we use experimental evolution to test whether parents can evolve modifications in nursery construction when they are experimentally prevented from supplying care directly to offspring. We exposed replicate experimental populations of burying beetles (Nicrophorus vespilloides) to different regimes of posthatching care by allowing larvae to develop in the presence (Full Care) or absence of parents (No Care). After only 13 generations of experimental evolution, we found an adaptive evolutionary increase in the pace at which parents in the No Care populations converted a dead body into a carrion nest for larvae. Cross-fostering experiments further revealed that No Care larvae performed better on a carrion nest prepared by No Care parents than did Full Care larvae. We conclude that parents construct the nursery environment in relation to their effectiveness at supplying care directly, after offspring are born. When direct care is prevented entirely, they evolve to make compensatory adjustments to the nursery in which their young will develop. The rapid evolutionary change observed in our experiments suggests there is considerable standing genetic variation for parental care traits in natural burying beetle populations-for reasons that remain unclear.European Research Council (ERC)Royal Societ

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Biological control of invasive stink bugs: review of global state and future prospects

    No full text
    Invasive stink bugs (Hemiptera: Pentatomidae) are responsible for high economic losses to agriculture on a global scale. The most important species, dating from recent to old invasions, include Bagrada hilaris (Burmeister), Halyomorpha halys (StÄl), Piezodorus guildinii (Westwood), Nezara viridula (L.), and Murgantia histrionica (Hahn). Bagrada hilaris, H. halys, and N. viridula are now almost globally distributed. Biological control of these pests faces a complex set of challenges that must be addressed to maintain pest populations below the economic injury level. Several case studies of classical and conservation biological control of invasive stink bugs are reported here. The most common parasitoids in their geographical area of origin are egg parasitoids (Hymenoptera: Scelionidae, Encyrtidae, and Eupelmidae). Additionally, native parasitoids of adult stink bugs (Diptera: Tachinidae) have in some cases adapted to the novel hosts in the invaded area and native predators are known to prey on the various instars. Improving the efficacy of biocontrol agents is possible through conservation biological control techniques and exploitation of their chemical ecology. Moreover, integration of biological control with other techniques, such as behavioural manipulation of adult stink bugs and plant resistance, may be a sustainable pest control method within organic farming and integrated pest management (IPM) programs. However, additional field studies are needed to verify the efficacy of these novel methods and transfer them from research to application
    corecore