7 research outputs found

    How I report breast magnetic resonance imaging studies for breast cancer staging and screening

    Get PDF
    Magnetic resonance imaging (MRI) of the breast is the most sensitive imaging technique for the diagnosis and local staging of primary breast cancer and yet, despite the fact that it has been in use for 20 years, there is little evidence that its widespread uncritical adoption has had a positive impact on patient-related outcomes. This has been attributed previously to the low specificity that might be expected with such a sensitive modality, but with modern techniques and protocols, the specificity and positive predictive value for malignancy can exceed that of breast ultrasound and mammography. A more likely explanation is that historically, clinicians have acted on MRI findings and altered surgical plans without prior histological confirmation. Furthermore, modern adjuvant therapy for breast cancer has improved so much that it has become a very tall order to show a an improvement in outcomes such as local recurrence rates. In order to obtain clinically useful information, it is necessary to understand the strengths and weaknesses of the technique and the physiological processes reflected in breast MRI. An appropriate indication for the scan, proper patient preparation and good scan technique, with rigorous quality assurance, are all essential prerequisites for a diagnostically relevant study. The use of recognised descriptors from a standardised lexicon is helpful, since assessment can then dictate subsequent recommendations for management, as in the American College of Radiology BI-RADS (Breast Imaging Reporting and Data System) lexicon (Morris et al., ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, 2013). It also enables audit of the service. However, perhaps the most critical factor in the generation of a meaningful report is for the reporting radiologist to have a thorough understanding of the clinical question and of the findings that will influence management. This has never been more important than at present, when we are in the throes of a remarkable paradigm shift in the treatment of both early stage and locally advanced breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40644-016-0078-0) contains supplementary material, which is available to authorized users

    R3 breast lesions - are we categorising and managing them correctly?

    No full text

    False negative assessments: an effective quality assurance method

    No full text

    Indications for marker clip in the setting of neoadjuvant/neoendocrine therapy

    No full text

    Breast tumour volume and blood flow measured by MRI after one cycle of epirubicin and cyclophosphamide-based neoadjuvant chemotherapy as predictors of pathological response.

    Get PDF
    Objectives: Better markers of early response to neoadjuvant chemotherapy (NACT) in patients with breast cancer are required to enable the timely identification of non-responders and reduce unnecessary treatment side-effects. Early functional imaging may better predict response to treatment than conventional measures of tumour size. The purpose of this study was to test the hypothesis that the change in tumour blood flow after one cycle of NACT would predict pathological response. Methods: In this prospective cohort study, dynamic contrast-enhanced MRI was performed in 35 females with breast cancer before and after one cycle of epirubicin and cyclophosphamide-based NACT (EC90). Estimates of tumour blood flow and tumour volume were compared with pathological response obtained at surgery following completion of NACT. Results: Tumour blood flow at baseline (mean ± SD; 0.32 ± 0.17 ml/min/ml) reduced slightly after one cycle of NACT (0.28 ± 0.18 ml/min/ml). Following treatment 15 patients were identified as pathological responders and 20 as non-responders. There were no relationships found between tumour blood flow and pathological response. Conversely, tumour volume was found to be a good predictor of pathological response (smaller tumours did better) at both baseline (area under the receiver operating characteristic curve 0.80) and after one cycle of NACT (area under the receiver operating characteristic curve 0.81). Conclusion & advances in knowledge: The change in breast tumour blood flow following one cycle of EC90 did not predict pathological response. Tumour volume may be a better early marker of response with such agents
    corecore