5 research outputs found

    Eye-Size Variability in Deep-Sea Lanternfishes (Myctophidae): An Ecological and Phylogenetic Study

    Get PDF
    One of the most common visual adaptations seen in the mesopelagic zone (200-1000 m), where the amount of light diminishes exponentially with depth and where bioluminescent organisms predominate, is the enlargement of the eye and pupil area. However, it remains unclear how eye size is influenced by depth, other environmental conditions and phylogeny. In this study, we determine the factors influencing variability in eye size and assess whether this variability is explained by ecological differences in habitat and lifestyle within a family of mesopelagic fishes characterized by broad intra-and interspecific variance in depth range and luminous patterns. We focus our study on the lanternfish family (Myctophidae) and hypothesise that lanternfishes with a deeper distribution and/or a reduction of bioluminescent emissions have smaller eyes and that ecological factors rather than phylogenetic relationships will drive the evolution of the visual system. Eye diameter and standard length were measured in 237 individuals from 61 species of lanternfishes representing all the recognised tribes within the family in addition to compiling an ecological dataset including depth distribution during night and day and the location and sexual dimorphism of luminous organs. Hypotheses were tested by investigating the relationship between the relative size of the eye (corrected for body size) and variations in depth and/or patterns of luminous-organs using phylogenetic comparative analyses. Results show a great variability in relative eye size within the Myctophidae at all taxonomic levels (from subfamily to genus), suggesting that this character may have evolved several times. However, variability in eye size within the family could not be explained by any of our ecological variables (bioluminescence and depth patterns), and appears to be driven solely by phylogenetic relationships

    Lanternfish (myctophidae) zoogeography off Eastern Australia: a comparison with physicochemical biogeography

    Get PDF
    In this first attempt to model the distributions of a mesopelagic fish family at this scale in the eastern Australian region (10°S to 57°S), lanternfish species occurrence data spanning a period from 1928 to 2010 were modelled against environmental covariates. This involved: (1) data collation and taxonomic quality checking, (2) classification of trawls into “horizontal” (presence-absence) and “oblique” (presence-only) types, and classification of vertical migration patterns using existing literature and the species occurrence database, (3) binomial GAMs using presence-absence data for representative temperate, subtropical and tropical species to examine depth interactions with environmental covariates and refine the selection of environmental layers for presence-only MAXENT models, (4) Presence-only MAXENT modelling using data from all trawls and the reduced environmental layers, and (5) Multivariate analysis (area-wise and species-wise) of the resulting matrix of logistic score by geographic pixel. We test the hypothesis that major fronts in the region (Tasman Front, Subtropical Convergence, Subantarctic Front) represent zoogeographic boundaries. A four-region zoogeographic scheme is hypothesised: Coral Sea region, Subtropical Lower Water region, Subtropical Convergence/South Tasman region and Subantarctic region. The Tasman Front, Subtropical Convergence and Subantarctic Front represented zoogeographic boundaries. An additional boundary at ~25°S (coined the ‘Capricorn’ boundary) was adopted to delineate the Coral Sea from Subtropical Lower Water regions. Lanternfish zoogeographic regions are congruent with some aspects of two prevailing physicochemical biogeographic schema in the region, but neither of these schema alone accurately predicts lanternfish distributions. As lanternfishes integrate vertical ocean processes, the hypothesised lanternfish zoogeography may represent a useful model for a generalised pelagic biogeography that should be tested for other oceanic groups
    corecore