27 research outputs found

    Variant-dependent heterogeneity in amyloid β burden in autosomal dominant Alzheimer's disease: cross-sectional and longitudinal analyses of an observational study

    Get PDF
    Background: Insights gained from studying individuals with autosomal dominant Alzheimer's disease have broadly influenced mechanistic hypotheses, biomarker development, and clinical trials in both sporadic and dominantly inherited Alzheimer's disease. Although pathogenic variants causing autosomal dominant Alzheimer's disease are highly penetrant, there is substantial heterogeneity in levels of amyloid β (Aβ) between individuals. We aimed to examine whether this heterogeneity is related to disease progression and to investigate the association with mutation location within PSEN1, PSEN2, or APP. Methods: We did cross-sectional and longitudinal analyses of data from the Dominantly Inherited Alzheimer's Network (DIAN) observational study, which enrols individuals from families affected by autosomal dominant Alzheimer's disease. 340 participants in the DIAN study who were aged 18 years or older, had a history of autosomal dominant Alzheimer's disease in their family, and who were enrolled between September, 2008, and June, 2019, were included in our analysis. 206 participants were carriers of pathogenic mutations in PSEN1, PSEN2, or APP, and 134 were non-carriers. 62 unique pathogenic variants were identified in the cohort and were grouped in two ways. First, we sorted variants in PSEN1, PSEN2, or APP by the affected protein domain. Second, we divided PSEN1 variants according to position before or after codon 200. We examined variant-dependent variability in Aβ biomarkers, specifically Pittsburgh-Compound-B PET (PiB-PET) signal, levels of CSF Aβ1-42 (Aβ42), and levels of Aβ1-40 (Aβ40). Findings: Cortical and striatal PiB-PET signal showed striking variant-dependent variability using both grouping approaches (p0·7), and CSF Aβ42 levels (codon-based grouping: p=0·49; domain-based grouping: p=0·095). Longitudinal PiB-PET signal also varied across codon-based groups, mirroring cross-sectional analyses. Interpretation: Autosomal dominant Alzheimer's disease pathogenic variants showed highly differential temporal and regional patterns of PiB-PET signal, despite similar functional progression. These findings suggest that although increased PiB-PET signal is generally seen in autosomal dominant Alzheimer's disease, higher levels of PiB-PET signal at an individual level might not reflect more severe or more advanced disease. Our results have high relevance for ongoing clinical trials in autosomal dominant Alzheimer's disease, including those using Aβ PET as a surrogate marker of disease progression. Additionally, and pertinent to both sporadic and autosomal dominant Alzheimer's disease, our results suggest that CSF and PET measures of Aβ levels are not interchangeable and might reflect different Aβ-driven pathobiological processes. Funding: National Institute on Aging, Doris Duke Charitable Foundation, German Center for Neurodegenerative Diseases, Japanese Agency for Medical Research and Development

    Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease

    Get PDF
    Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aβ compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic β-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials

    The relationship between recall of recently versus remotely encoded famous faces and amyloidosis in clinically normal older adults.

    Get PDF
    Introduction: Alzheimer's disease (AD) patients exhibit temporally graded memory loss with remote memories remaining more intact than recent memories. It is unclear whether this temporal pattern is observable in clinically normal adults with amyloid pathology (i.e. preclinical AD). Methods: Participants were asked to recall the names of famous figures most prominent recently (famous after 1990) and remotely (famous from 1960-1980) and were provided with a phonemic cue to ensure that memory failure was not purely due to verbal retrieval weaknesses. In addition, participants identified line drawings of objects. Clinically normal older adults (n = 125) were identified as amyloid β positive or negative (Aβ+/-) using Pittsburgh compound B positron emission tomography. The relationship between Aβ+/- and recall of remote and recent famous face-names and objects was examined using repeated measures analyses and general linear models controlling for demographics and media usage. Results: When provided with a phonemic cue, Aβ+ participants recalled the names of fewer recent famous faces compared with Aβ- participants. However, recall of remote famous face-names and objects did not differ by Aβ group. Discussion: Relative sparing of remotely learned information compared with recently learned information is (1) detectable in the preclinical stages of AD and (2) related to amyloid pathology. Both this temporal gradient and assessment of person-centered rather than object-centered semantic information may be particularly meaningful for tracking early memory changes in the AD trajectory

    Repetitive negative thinking is associated with amyloid, tau, and cognitive decline

    No full text
    INTRODUCTION: The Cognitive Debt hypothesis proposes that repetitive negative thinking (RNT), a modifiable process common to many psychological risk factors for Alzheimer's disease (AD) may itself increase risk. We sought to empirically examine relationships between RNT and markers of AD, compared with anxiety and depression symptoms. METHODS: Two hundred and ninety-two older adults with longitudinal cognitive assessments, including 113 with amyloid-positron emission tomography (PET) and tau-PET scans, from the PREVENT-AD cohort and 68 adults with amyloid-PET scans from the IMAP+ cohort were included. All participants completed RNT, anxiety, and depression questionnaires. RESULTS: RNT was associated with decline in global cognition (P = .02); immediate (P = .03) and delayed memory (P = .04); and global amyloid (PREVENT-AD: P = .01; IMAP+: P = .03) and entorhinal tau (P = .02) deposition. Relationships remained after adjusting for potential confounders. DISCUSSION: RNT was associated with decline in cognitive domains affected early in AD and with neuroimaging AD biomarkers. Future research could investigate whether modifying RNT reduces AD risk

    PET staging of amyloidosis using striatum.

    Get PDF
    INTRODUCTION: Amyloid positron emission tomography (PET) data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. METHODS: We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. RESULTS: Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. DISCUSSION: PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research

    Neurogenetic contributions to amyloid beta and tau spreading in the human cortex.

    No full text
    Tau and amyloid beta (Aβ) proteins accumulate along neuronal circuits in Alzheimer's disease. Unraveling the genetic background for the regional vulnerability of these proteinopathies can help in understanding the mechanisms of pathology progression. To that end, we developed a novel graph theory approach and used it to investigate the intersection of longitudinal Aβ and tau positron emission tomography imaging of healthy adult individuals and the genetic transcriptome of the Allen Human Brain Atlas. We identified distinctive pathways for tau and Aβ accumulation, of which the tau pathways correlated with cognitive levels. We found that tau propagation and Aβ propagation patterns were associated with a common genetic profile related to lipid metabolism, in which APOE played a central role, whereas the tau-specific genetic profile was classified as 'axon related' and the Aβ profile as 'dendrite related'. This study reveals distinct genetic profiles that may confer vulnerability to tau and Aβ in vivo propagation in the human brain
    corecore