270 research outputs found

    Id-1 stimulates cell proliferation through activation of EGFR in ovarian cancer cells

    Get PDF
    Increased EGFR (epidermal growth factor receptor) expression has been reported in many types of human cancer and its levels are positively associated with advanced cancers. Recently, upregulation of Id-1 (inhibitor of differentiation or DNA binding) protein was found in over 70% of ovarian cancer samples and correlated with poor survival of ovarian cancer patients. However, the molecular mechanisms responsible for the role of Id-1 in ovarian cancer are not clear. The aim of this study was to investigate the effect of Id-1 on ovarian cancer proliferation and its association with the EGFR pathway. To achieve this, we transfected an Id-1 expression vector into three ovarian cancer cell lines and examined cell proliferation rate by flow cytometry and bromodeoxyuridine staining. We found that ectopic Id-1 expression led to increased cell proliferation demonstrated by increased BrdU incorporation rate and S-phase fraction. The Id-1-induced cell growth was associated with upregulation of EGFR at both transcriptional and protein levels. In contrast, inactivation of Id-1 through transfection of an Id-1 antisense vector resulted in downregulation of EGFR. Our results indicate that increased Id-1 in ovarian cancer cells may promote cancer cell proliferation through upregulation of EGFR. Our findings also implicate that Id-1 may be a potential target for the development of novel strategies in the treatment of ovarian cancer. © 2004 Cancer Research UK.link_to_OA_fulltex

    Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering

    Get PDF
    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized.Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure

    Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    Get PDF
    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a catalyst that comprises a copper complex, based on an achiral ligand, non-covalently bound to (deoxy)ribonucleic acid, which is the only source of chirality present under the reaction conditions. The chiral β-hydroxy ketone product was obtained in up to 82% enantiomeric excess. Deuterium-labelling studies demonstrated that the reaction is diastereospecific, with only the syn hydration product formed. So far, this diastereospecific and enantioselective reaction had no equivalent in conventional homogeneous catalysis

    Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli

    Get PDF
    The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli.To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein.To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements

    An AP Endonuclease 1–DNA Polymerase β Complex: Theoretical Prediction of Interacting Surfaces

    Get PDF
    Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5′ to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-β). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-β, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-β based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-β located downstream of APEX1 (3′ to the damaged site) and three with pol-β located upstream of APEX1 (5′ to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (∼−10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-β at the 3′-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-β in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-β in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3′ side. The method described here can be used for analysis in any DNA-metabolizing pathway where weak interactions are the principal mode of cross-talk among participants and co-crystal structures of the individual components are available

    The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints

    Get PDF
    On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just 2\sim2 days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V=11.94V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (Δm15(B)=0.796±0.001stat\Delta m_{15}(B) = 0.796 \pm 0.001_{\textrm{stat}}), a BB-band maximum at 2457015.823±0.030stat2457015.823 \pm 0.030_{\textrm{stat}}, a rise time of 16.940.11+0.1116.94^{+ 0.11 }_{- 0.11 } days, and moderate host--galaxy extinction (E(BV)host=0.329±0.001statE(B-V)_{\textrm{host}} = 0.329 \pm 0.001_{\textrm{stat}}). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of μ=30.834±0.003stat±0.16syst\mu = 30.834 \pm 0.003_{\textrm{stat}} \pm 0.16_{\textrm{syst}} corresponding to a distance of 14.68±0.02stat±1.15syst14.68 \pm 0.02_{\textrm{stat}} \pm 1.15_{\textrm{syst}} Mpc. However, a tip of the red giant branch distance to the host galaxy should be measured to allow ASASSN-14lp to be added to the calibrating sample of Type Ia supernovae. Finally, using our early-time photometric and spectroscopic data along with our derived light curve properties, we rule out red giant secondaries with limits on the radius of a non-degenerate companion as small as 0.34R0.34 \rm{R}_\odot for favorable viewing angles and estimates of the explosion time

    High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal

    Get PDF
    Promising approaches to produce higher alcohols, e.g., isobutanol, using Escherichia coli have been developed with successful results. Here, we translated the isobutanol process from shake flasks to a 1-L bioreactor in order to characterize three E. coli strains. With in situ isobutanol removal from the bioreactor using gas stripping, the engineered E. coli strain (JCL260) produced more than 50 g/L in 72 h. In addition, the isobutanol production by the parental strain (JCL16) and the high isobutanol-tolerant mutant (SA481) were compared with JCL260. Interestingly, we found that the isobutanol-tolerant strain in fact produced worse than either JCL16 or JCL260. This result suggests that in situ product removal can properly overcome isobutanol toxicity in E. coli cultures. The isobutanol productivity was approximately twofold and the titer was 9% higher than n-butanol produced by Clostridium in a similar integrated system

    De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus

    Get PDF
    Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10−7), SMARCC1 (p = 8.15 × 10−10), and PTCH1 (p = 1.06 × 10−6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10−4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications

    Host Genetic Factors and Vaccine-Induced Immunity to HBV Infection: Haplotype Analysis

    Get PDF
    Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated individuals, 454 individuals from 174 families, and the combined sample (N = 651). Global and individual haplotype association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44, CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the combined analysis. Previous single locus results were confirmed for CD44 (combined global p = 9.1×10−5 for rs353644-rs353630-rs7937602) and CD58 (combined global p = 0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19 and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with HBV vaccine-induced immunity in several new genes
    corecore