267 research outputs found

    Formation of singularities for equivariant 2+1 dimensional wave maps into the two-sphere

    Full text link
    In this paper we report on numerical studies of the Cauchy problem for equivariant wave maps from 2+1 dimensional Minkowski spacetime into the two-sphere. Our results provide strong evidence for the conjecture that large energy initial data develop singularities in finite time and that singularity formation has the universal form of adiabatic shrinking of the degree-one harmonic map from R2\mathbb{R}^2 into S2S^2.Comment: 14 pages, 5 figures, final version to be published in Nonlinearit

    Dispersion and collapse of wave maps

    Full text link
    We study numerically the Cauchy problem for equivariant wave maps from 3+1 Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability analysis of self-similar solutions we formulate two conjectures. The first conjecture states that singularities which are produced in the evolution of sufficiently large initial data are approached in a universal manner given by the profile of a stable self-similar solution. The second conjecture states that the codimension-one stable manifold of a self-similar solution with exactly one instability determines the threshold of singularity formation for a large class of initial data. Our results can be considered as a toy-model for some aspects of the critical behavior in formation of black holes.Comment: 14 pages, Latex, 9 eps figures included, typos correcte

    Black holes have no short hair

    Full text link
    We show that in all theories in which black hole hair has been discovered, the region with non-trivial structure of the non-linear matter fields must extend beyond 3/2 the horizon radius, independently of all other parameters present in the theory. We argue that this is a universal lower bound that applies in every theory where hair is present. This {\it no short hair conjecture} is then put forward as a more modest alternative to the original {\it no hair conjecture}, the validity of which now seems doubtful.Comment: Published in Physical Review Letters, 13 pages in Late

    Stratified horizontal flow in vertically vibrated granular layers

    Full text link
    A layer of granular material on a vertically vibrating sawtooth-shaped base exhibits horizontal flow whose speed and direction depend on the parameters specifying the system in a complex manner. Discrete-particle simulations reveal that the induced flow rate varies with height within the granular layer and oppositely directed flows can occur at different levels. The behavior of the overall flow is readily understood once this novel feature is taken into account.Comment: 4 pages, 6 figures, submitte

    Transport Coefficients for Granular Media from Molecular Dynamics Simulations

    Full text link
    Under many conditions, macroscopic grains flow like a fluid; kinetic theory pred icts continuum equations of motion for this granular fluid. In order to test the theory, we perform event driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that continuum theory describes the system well. With a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conductivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory, while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199

    Odd-parity perturbations of self-similar Vaidya spacetime

    Get PDF
    We carry out an analytic study of odd-parity perturbations of the self-similar Vaidya space-times that admit a naked singularity. It is found that an initially finite perturbation remains finite at the Cauchy horizon. This holds not only for the gauge invariant metric and matter perturbation, but also for all the gauge invariant perturbed Weyl curvature scalars, including the gravitational radiation scalars. In each case, `finiteness' refers to Sobolev norms of scalar quantities on naturally occurring spacelike hypersurfaces, as well as pointwise values of these quantities.Comment: 28 page

    Cosmology and Static Spherically Symmetric solutions in D-dimensional Scalar Tensor Theories: Some Novel Features

    Full text link
    We consider scalar tensor theories in D-dimensional spacetime, D \ge 4. They consist of metric and a non minimally coupled scalar field, with its non minimal coupling characterised by a function. The probes couple minimally to the metric only. We obtain vacuum solutions - both cosmological and static spherically symmetric ones - and study their properties. We find that, as seen by the probes, there is no singularity in the cosmological solutions for a class of functions which obey certain constraints. It turns out that for the same class of functions, there are static spherically symmetric solutions which exhibit novel properties: {\em e.g.} near the ``horizon'', the gravitational force as seen by the probe becomes repulsive.Comment: Revtex. 21 pages. Version 2: More references added. Version 3: Issues raised by the referee are addressed. Results unchanged. Title modified; a new subsection and more references added. Verison to appear in Physical Review

    Continuum-type stability balloon in oscillated granular layers

    Get PDF
    The stability of convection rolls in a fluid heated from below is limited by secondary instabilities, including the skew-varicose and crossroll instabilities. We observe a stability boundary defined by the same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynamics simulations show that the mechanism of the skew-varicose instability in granular patterns is similar to that in convection. These results suggest that pattern formation in granular media can be described by continuum models analogous to those used in fluid systems.Comment: 4 pages, 6 ps figs, submitted to PR

    Effect of boundary conditions on diffusion in two-dimensional granular gases

    Full text link
    We analyze the influence of boundary conditions on numerical simulations of the diffusive properties of a two dimensional granular gas. We show in particular that periodic boundary conditions introduce unphysical correlations in time which cause the coefficient of diffusion to be strongly dependent on the system size. On the other hand, in large enough systems with hard walls at the boundaries, diffusion is found to be independent of the system size. We compare the results obtained in this case with Langevin theory for an elastic gas. Good agreement is found. We then calculate the relaxation time and the influence of the mass for a particle of radius RsR_s in a sea of particles of radius RbR_b. As granular gases are dissipative, we also study the influence of an external random force on the diffusion process in a forced dissipative system. In particular, we analyze differences in the mean square velocity and displacement between the elastic and inelastic cases.Comment: 15 figures eps figures, include

    Einstein-Yang-Mills Isolated Horizons: Phase Space, Mechanics, Hair and Conjectures

    Get PDF
    The concept of "Isolated Horizon" has been recently used to provide a full Hamiltonian treatment of black holes. It has been applied successfully to the cases of {\it non-rotating}, {\it non-distorted} black holes in Einstein Vacuum, Einstein-Maxwell and Einstein-Maxwell-Dilaton Theories. In this note, it is investigated the extent to which the framework can be generalized to the case of non-Abelian gauge theories where `hairy black holes' are known to exist. It is found that this extension is indeed possible, despite the fact that in general, there is no `canonical normalization' yielding a preferred Horizon Mass. In particular the zeroth and first laws are established for all normalizations. Colored static spherically symmetric black hole solutions to the Einstein-Yang-Mills equations are considered from this perspective. A canonical formula for the Horizon Mass of such black holes is found. This analysis is used to obtain nontrivial relations between the masses of the colored black holes and the regular solitonic solutions in Einstein-Yang-Mills theory. A general testing bed for the instability of hairy black holes in general non-linear theories is suggested. As an example, the embedded Abelian magnetic solutions are considered. It is shown that, within this framework, the total energy is also positive and thus, the solutions are potentially unstable. Finally, it is discussed which elements would be needed to place the Isolated Horizons framework for Einstein-Yang-Mills theory in the same footing as the previously analyzed cases. Motivated by these considerations and using the fact that the Isolated Horizons framework seems to be the appropriate language to state uniqueness and completeness conjectures for the EYM equations --in terms of the horizon charges--, two such conjectures are put forward.Comment: 24 pages, 3 figures, Revtex fil
    • …
    corecore