14,166 research outputs found

    The Role of the Background in Auger Electron Spectroscopy

    Get PDF
    In Auger Electron Spectroscopy (AES) the characteristic Auger peaks are superimposed on a relatively high continuum of back-scattered electrons. In the commonly used differential mode of recording Auger spectra, the influence of the background appears through its contribution to the noise and the enhancement of the Auger signal that makes a backscattering correction necessary in quantitative AES. With the increased use of low incident beam currents to achieve high spatial resolution, the direct spectrum is increasingly used, so that a better understanding of the background is desirable. In this paper the variations of the background with atomic number, incident beam energy and angle of beam incidence are reviewed and some new experimental measurements are presented to augment existing data. The relative contributions of back-scattered primary electrons, secondary electrons and inelastically scattered Auger electrons to the background are discussed. Measurements were also made on the variation of the Auger peak height to background ratio with beam energy from which it is possible to comment on the optimum incident beam voltage for AES. Various approaches to extracting quantitative information from the peaks in the direct spectrum are discussed and a new approach to quantitative analysis based on the ratio of the magnitude of the Auger peak to a background measured in the region of 2 keV is proposed

    Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    Full text link
    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBmm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the "raw" LSUBmm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m→∞m \rightarrow \infty, of the truncation index mm, which denotes the {\it only} approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J1XXZJ^{XXZ}_{1}--J2XXZJ^{XXZ}_{2} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J1>0J_{1}>0 and J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0, respectively, where both interactions are of the same anisotropic XXZXXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0≤κ≤10 \leq \kappa \leq 1 of the frustration parameter and 0≤Δ≤10 \leq \Delta \leq 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space

    Spin-1/2 J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice

    Full text link
    Using the coupled cluster method (CCM) we study the full (zero-temperature) ground-state (GS) phase diagram of a spin-half (s=1/2s=1/2) J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice. Each site of the square lattice has 4 nearest-neighbour exchange bonds of strength J1J_{1} and 2 next-nearest-neighbour (diagonal) bonds of strength J2J_{2}. The J2J_{2} bonds are arranged so that the basic square plaquettes in alternating columns have either both or no J2J_{2} bonds included. The classical (s→∞s \rightarrow \infty) version of the model has 4 collinear phases when J1J_{1} and J2J_{2} can take either sign. Three phases are antiferromagnetic (AFM), showing so-called N\'{e}el, double N\'{e}el and double columnar striped order respectively, while the fourth is ferromagnetic. For the quantum s=1/2s=1/2 model we use the 3 classical AFM phases as CCM reference states, on top of which the multispin-flip configurations arising from quantum fluctuations are incorporated in a systematic truncation hierarchy. Calculations of the corresponding GS energy, magnetic order parameter and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order are thus carried out numerically to high orders of approximation and then extrapolated to the (exact) physical limit. We find that the s=1/2s=1/2 model has 5 phases, which correspond to the four classical phases plus a new quantum phase with plaquette VBC order. The positions of the 5 quantum critical points are determined with high accuracy. While all 4 phase transitions in the classical model are first order, we find strong evidence that 3 of the 5 quantum phase transitions in the s=1/2s=1/2 model are of continuous deconfined type

    A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice

    Full text link
    The coupled cluster method (CCM) is used to study the zero-temperature properties of a frustrated spin-half (s=12s={1}{2}) J1J_{1}--J2J_{2} Heisenberg antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an underlying square lattice has 4 nearest-neighbor exchange bonds of strength J1>0J_{1}>0 and 2 next-nearest-neighbor (diagonal) bonds of strength J2≡xJ1>0J_{2} \equiv x J_{1}>0, with each square plaquette having only one diagonal bond. The diagonal bonds form a chevron pattern, and the model thus interpolates smoothly between 2D HAFs on the square (x=0x=0) and triangular (x=1x=1) lattices, and also extrapolates to disconnected 1D HAF chains (x→∞x \to \infty). The classical (s→∞s \to \infty) version of the model has N\'{e}el order for 0<x<xcl0 < x < x_{{\rm cl}} and a form of spiral order for xcl<x<∞x_{{\rm cl}} < x < \infty, where xcl=12x_{{\rm cl}} = {1}{2}. For the s=12s={1}{2} model we use both these classical states, as well as other collinear states not realized as classical ground-state (GS) phases, as CCM reference states, on top of which the multispin-flip configurations resulting from quantum fluctuations are incorporated in a systematic truncation scheme, which we carry out to high orders and extrapolate to the physical limit. We calculate the GS energy, GS magnetic order parameter, and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order, including plaquette and two different dimer forms. We find that the s=12s={1}{2} model has two quantum critical points, at xc1≈0.72(1)x_{c_{1}} \approx 0.72(1) and xc2≈1.5(1)x_{c_{2}} \approx 1.5(1), with N\'{e}el order for 0<x<xc10 < x < x_{c_{1}}, a form of spiral order for xc1<x<xc2x_{c_{1}} < x < x_{c_{2}} that includes the correct three-sublattice 120∘120^{\circ} spin ordering for the triangular-lattice HAF at x=1x=1, and parallel-dimer VBC order for xc2<x<∞x_{c_{2}} < x < \infty

    Resonances, Unstable Systems and Irreversibility: Matter Meets Mind

    Full text link
    The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. Accepted for publication in the Internation Journal of Theoretical Physic

    Literature Survey of Radiochemical Cross-section Data Below 425 Mev

    Get PDF
    Literature survey of radiochemical cross sections below 425 Me

    Assessment and diagnosis of Developmental Language Disorder: The experiences of speech and language therapists

    Get PDF
    © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).Background: For many years research and practice have noted the impact of the heterogeneous nature of Developmental Language Disorder (also known as language impairment or specific language impairment) on diagnosis and assessment. Recent research suggests the disorder is not restricted to the language domain and against this background, the challenge for the practitioner is to provide accurate assessment and effective therapy. The language practitioner aims to support the child and their carers to achieve the best outcomes. However, little is known about the experiences of the language practitioner in the assessment process, in contrast to other childhood disorders, yet their expertise is central in the assessment and diagnosis of children with language disorder. Aims: This study aimed to provide a detailed qualitative description of the experiences of speech and language therapists involved in the assessment and diagnosis of children with Developmental Language Disorder. Methods & Procedures: The qualitative study included three focus groups to provide a credible and rich description of the experiences of speech and language therapists involved in the assessment of Developmental Language Disorder. The speech and language therapists who participated in the study were recruited from three NHS Trusts across the UK and all were directly involved in the assessment and diagnosis procedures. The lengths of practitioner experience ranged from 2 years to 38 years. The data was analysed using a thematic analysis in accordance with the principles set out by Braun & Clarke (2006). Outcomes & Results: The data showed a number of key themes concerning the experiences of speech and language therapists in assessing children with Developmental Language Disorder (DLD). These themes ranged from the participants’ experiences of the barriers to early referral, challenges for assessment and the concerns over continued future support. Conclusions & Implications: This study provides first-hand evidence from speech and language therapists in the assessment of children with Developmental Language Disorder, drawing together experiences from language practitioners from different regions. The findings provide insight to the barriers to referral, the potential variations in the assessment process, the role of practitioner expertise and the challenges faced them. The importance of early intervention, useful assessment tools and future support were expressed. Taken together, the results relate to some issues to be addressed on a practical level and a continuing need for initiatives to raise awareness of DLD in the public domain.Peer reviewe
    • …
    corecore