5 research outputs found

    No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons

    Get PDF
    Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the oocyte is ovulated. Assuming that the mother can detect the sex of the developing oocyte before ovulation, it has been suggested that a follicle of the un-preferred sex could selectively be induced to become atretic and regress instead of being ovulated (selective follicle abortion). This potential mechanism has been proposed to underlie biased primary sex ratios in birds, including the homing pigeon (Columba livia domestica), which produces a modal clutch size of two eggs. However, without replacement by an additional, already mature follicle, abortion of a preovulatory follicle would most likely result in either reduced clutch sizes or laying gaps, since a not-yet-recruited follicle still needed to undergo the whole maturation phase. In the current study we killed female pigeons, which were adjusting embryo sex of first eggs according to change in body mass. We examined ovaries for signs of follicle abortion but did not find any supporting evidence. All females produced one or two mature follicles but only two out of the 56 experimental birds produced an additional third mature follicle. Therefore, our results do not corroborate the hypothesis that pigeon mothers manipulate primary offspring sex by selectively aborting follicles of the un-preferred sex

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Development and validation of early warning score systems for COVID-19 patients

    No full text
    COVID-19 is a major, urgent, and ongoing threat to global health. Globally more than 24 million have been infected and the disease has claimed more than a million lives as of November 2020. Predicting which patients will need respiratory support is important to guiding individual patient treatment and also to ensuring sufficient resources are available. The ability of six common Early Warning Scores (EWS) to identify respiratory deterioration defined as the need for advanced respiratory support (high-flow nasal oxygen, continuous positive airways pressure, non-invasive ventilation, intubation) within a prediction window of 24 h is evaluated. It is shown that these scores perform sub-optimally at this specific task. Therefore, an alternative EWS based on the Gradient Boosting Trees (GBT) algorithm is developed that is able to predict deterioration within the next 24 h with high AUROC 94% and an accuracy, sensitivity, and specificity of 70%, 96%, 70%, respectively. The GBT model outperformed the best EWS (LDTEWS:NEWS), increasing the AUROC by 14%. Our GBT model makes the prediction based on the current and baseline measures of routinely available vital signs and blood tests
    corecore