5 research outputs found

    Effect of kibble size, shape and additives on plaque in cats

    No full text
    Forty mixed-breed cats completed a parallel-group, clinical study to compare supragingival plaque accumulation using a triangular or rectangular shaped dry-expanded diet, with or without an anti-calculus agent (sodium tripolyphosphate) or an anti-plaque agent (plaquereducing nutrient). The cats were divided into 4 equal groups based on plaque scores. Results showed that coating the kibble with sodium tripolyphosphate had no effect on plaque accumulation. Increasing the surface area and volume and changing the shape of the kibble was associated with a reduction in plaque accumulation, and coating the kibble with a plaque-reducing nutrient further reduced plaque accumulation. The importance of a combination of both mechanical abrasion (chewing) and chemical interference (plaque-reducing nutrient) was demonstrated in this study

    The effect of dietary hydroxyproline and dietary oxalate on urinary oxalate excretion in cats

    No full text
    In humans and rodents, dietary hydroxyproline (hyp) and oxalate intake affect urinary oxalate (Uox) excretion. Whether Uox excretion occurs in cats was tested by feeding diets containing low oxalate (13 mg/100g DM) with high (Hhyp-Lox), moderate (Mhyp-Lox), and low hyp (Lhyp-Lox) concentrations (3.8, 2.0 and 0.2 g/100g DM, respectively), and low hyp with high oxalate (93 mg/100g DM; Lhyp-Hox) to 8 adult, female cats in a 48-d study using a Latin square design. Cats were randomly allocated to 1 of the four 12-d treatment periods and fed according to individual energy needs. Feces and urine were collected quantitatively using modified litter boxes during the final 5 d of each period. Feces were analyzed for oxalate and Ca, and urine for specific density, pH, oxalate, Ca, P, Mg, Na, K, ammonia, citrate, urate, sulphate, and creatinine. Increasing hyp intake (0.2, 2.0, and 3.8 g/100g DM) resulted in increased Uox excretion (Lhyp-Lox vs. Mhyp-Lox vs. Hhyp-Lox, P <0.05), and the linear dose-response equation was: Uox (mg ¿d(-1)) = 5.62 + 2.10 x g hyp intake/d (r(2) = 0.56; P <0.001). Increasing oxalate intake from 13 to 93 mg/100g DM did not affect Uox excretion, but resulted in an increase in fecal oxalate output (P <0.001) and positive oxalate balance (32.20 ± 2.06 mg¿d(-1)). The results indicate that the intestinal absorption of the supplemental oxalate, and thereby its contribution to Uox, was low (5.90 ± 5.24%). Relevant increases in endogenous Uox excretion were achieved by increasing dietary hyp intake. The hyp-containing protein sources should be minimized in Ca ox urolith preventative diets until their effect on Uox excretion is tested. The oxalate content (up to 93 mg/100g DM) in a diet with moderate Ca content does not contribute to Uox content

    Factors contributing to the variation in feline urinary oxalate excretion

    No full text
    This study aimed to identify factors (season, animal, and diet) contributing to the variation in urinary oxalate (Uox) excretion rate, Uox concentration, and urine volume in healthy adult cats. A data set (1,940 observations) containing information on Uox excretion rate of 65 cats fed 252 diets (i.e., each diet was fed to a group of 6 to 8 cats), with known dietary oxalate concentrations, collected over a 6 yr period at a feline nutrition facility, were retrospectively analyzed. Data related to season, animal (i.e., age, gender, body weight, and breed), and diet (i.e., nutrient content) characteristics were subjected to stepwise multivariate regression analysis to identify factors significantly correlated to Uox excretion rate (µmol/(kg BW0.67·d)) and concentration (mmol/L) as well as urine volume (mL/(kg BW0.67·d)). Independent factors significantly (P <0.05) associated with lower Uox concentration (mmol/L) included greater ash, Ca, and Na intake and lower nitrogen-free extract, total dietary fiber, P, and oxalate intake, and a body weigh
    corecore