8 research outputs found

    Catatonia Secondary to Sudden Clozapine Withdrawal: A Case with Three Repeated Episodes and a Literature Review

    Get PDF
    A literature search identified 9 previously published cases that were considered as possible cases of catatonia secondary to sudden clozapine withdrawal. Two of these 9 cases did not provide enough information to make a diagnosis of catatonia according to the Diagnostic and Statistical Manual, 5th Edition (DSM-5). The Liverpool Adverse Drug Reaction (ADR) Causality Scale was modified to assess ADRs secondary to drug withdrawal. From the 7 published cases which met DSM-5 catatonia criteria, using the modified scale, we established that 3 were definitive and 4 were probable cases of catatonia secondary to clozapine withdrawal. A new definitive case is described with three catatonic episodes which (1) occurred after sudden discontinuation of clozapine in the context of decades of follow-up, (2) had ≥3 of 12 DSM-5 catatonic symptoms and serum creatinine kinase elevation, and (3) required medical hospitalization and intravenous fluids. Clozapine may be a gamma-aminobutyric acid (GABA) receptor agonist; sudden clozapine withdrawal may explain a sudden decrease in GABA activity that may contribute to the development of catatonic symptoms in vulnerable patients. Based on the limited information from these cases, the pharmacological treatment for catatonia secondary to sudden clozapine withdrawal can include benzodiazepines and/or restarting clozapine

    Catatonia Secondary to Sudden Clozapine Withdrawal: A Case with Three Repeated Episodes and a Literature Review

    Get PDF
    A literature search identified 9 previously published cases that were considered as possible cases of catatonia secondary to sudden clozapine withdrawal. Two of these 9 cases did not provide enough information to make a diagnosis of catatonia according to the Diagnostic and Statistical Manual, 5th Edition (DSM-5). The Liverpool Adverse Drug Reaction (ADR) Causality Scale was modified to assess ADRs secondary to drug withdrawal. From the 7 published cases which met DSM-5 catatonia criteria, using the modified scale, we established that 3 were definitive and 4 were probable cases of catatonia secondary to clozapine withdrawal. A new definitive case is described with three catatonic episodes which (1) occurred after sudden discontinuation of clozapine in the context of decades of follow-up, (2) had ≥3 of 12 DSM-5 catatonic symptoms and serum creatinine kinase elevation, and (3) required medical hospitalization and intravenous fluids. Clozapine may be a gamma-aminobutyric acid (GABA) receptor agonist; sudden clozapine withdrawal may explain a sudden decrease in GABA activity that may contribute to the development of catatonic symptoms in vulnerable patients. Based on the limited information from these cases, the pharmacological treatment for catatonia secondary to sudden clozapine withdrawal can include benzodiazepines and/or restarting clozapine

    Mechanically transformative electronics, sensors, and implantable devices

    Get PDF
    Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications

    Catatonia Secondary to Sudden Clozapine Withdrawal: A Case with Three Repeated Episodes and a Literature Review

    Get PDF
    A literature search identified 9 previously published cases that were considered as possible cases of catatonia secondary to sudden clozapine withdrawal. Two of these 9 cases did not provide enough information to make a diagnosis of catatonia according to the Diagnostic and Statistical Manual, 5th Edition (DSM-5). The Liverpool Adverse Drug Reaction (ADR) Causality Scale was modified to assess ADRs secondary to drug withdrawal. From the 7 published cases which met DSM-5 catatonia criteria, using the modified scale, we established that 3 were definitive and 4 were probable cases of catatonia secondary to clozapine withdrawal. A new definitive case is described with three catatonic episodes which (1) occurred after sudden discontinuation of clozapine in the context of decades of follow-up, (2) had ≥3 of 12 DSM-5 catatonic symptoms and serum creatinine kinase elevation, and (3) required medical hospitalization and intravenous fluids. Clozapine may be a gamma-aminobutyric acid (GABA) receptor agonist; sudden clozapine withdrawal may explain a sudden decrease in GABA activity that may contribute to the development of catatonic symptoms in vulnerable patients. Based on the limited information from these cases, the pharmacological treatment for catatonia secondary to sudden clozapine withdrawal can include benzodiazepines and/or restarting clozapine

    Rapidly-Customizable, Scalable 3D-Printed Wireless Optogenetic Probes for Versatile Applications in Neuroscience

    No full text
    Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating in vivo optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between in vivo studies. Here, a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes is introduced. The 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless in vivo optogenetics is detailed. Successful in vivo studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future. © 2020 Wiley-VCH GmbH1

    Correction: An International Adult Guideline for Making Clozapine Titration Safer by Using Six Ancestry-Based Personalized Dosing Titrations, CRP, and Clozapine Levels

    No full text

    An International Adult Guideline for Making Clozapine Titration Safer by Using Six Ancestry-Based Personalized Dosing Titrations, CRP, and Clozapine Levels

    No full text
    This international guideline proposes improving clozapine package inserts worldwide by using ancestry-based dosing and titration. Adverse drug reaction (ADR) databases suggest that clozapine is the third most toxic drug in the United States (US), and it produces four times higher worldwide pneumonia mortality than that by agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers, the lowest dose; male smokers, the highest dose). Poor metabolizer status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity, or inflammation with C-reactive protein (CRP) elevations. The Asian population (Pakistan to Japan) or the Americas' original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/mL. In the US, daily doses of 300-600 mg/day are recommended. Slow personalized titration may prevent early ADRs (including syncope, myocarditis, and pneumonia). This guideline defines six personalized titration schedules for inpatients: 1) ancestry from Asia or the original people from the Americas with lower metabolism (obesity or valproate) needing minimum therapeutic dosages of 75-150 mg/day, 2) ancestry from Asia or the original people from the Americas with average metabolism needing 175-300 mg/day, 3) European/Western Asian ancestry with lower metabolism (obesity or valproate) needing 100-200 mg/day, 4) European/Western Asian ancestry with average metabolism needing 250-400 mg/day, 5) in the US with ancestries other than from Asia or the original people from the Americas with lower clozapine metabolism (obesity or valproate) needing 150-300 mg/day, and 6) in the US with ancestries other than from Asia or the original people from the Americas with average clozapine metabolism needing 300-600 mg/day. Baseline and weekly CRP monitoring for at least four weeks is required to identify any inflammation, including inflammation secondary to clozapine rapid titration
    corecore