50 research outputs found

    MEMECYLON SPECIES: A REVIEW OF TRADITIONAL INFORMATION AND TAXONOMIC DESCRIPTION

    Get PDF
    The present review is to avail the comprehensive information on taxonomy, phytochemistry and pharmacology of Indian Memecylon species. Memecylon is one of the complex genus of flowering plants and it is an important source of traditional medicine. Owing to complexity in morphological characters, identification of Memecylon species has become very difficult. Nomenclature status of most of the Indian Memecylon species is not clear. Phylogenetic studies report on this genus are also very few. Memecylon species reported having potential pharmacological activities. This background made us present a review on Indian Memecylon species. Information on this plant genus was searched using various electronic databases in reference to the terms Indian Memecylon species taxonomy, phylogeny, pharmacological activities and phytoconstituents along with Indian classical texts, journals, etc. There is a confusion regarding the taxonomic status of Memecylon malabaricum, M. amplexicaule, M. depressum, M. wightii. M. umbellatum and M. edule. Several chemical constituents like memecylaene, umbelactone, amyrin, sitosterol, tartaric acid, malicacid, oleanolicacid, ursolicacid and tannins, triterpenes, and flavonoids have been identified in this genus. The plant extracts of this genus have been demonstrated to have potential pharmacological activities. Some of the phytoconstituents are attributed to the pharmacological potential of this genus. Further, there is a need to validate its taxonomic status and pharmacological properties by using modern biological techniques. If future studies throw a light on these aspects, definitely it will help in developing a potential biopharmaceutical product. Keywords: Biological activities, Taxonomy, Memecylon species, Phylogen

    Functional and molecular characterization of hyposensitive underactive bladder tissue and urine in streptozotocin-induced diabetic rat

    Get PDF
    Background: The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats. Methodology/Principal Findings: Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12. Conclusions/Significance: DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder. © 2014 Nirmal et al

    Physical properties of high performance fluoride ion conductor BaSnF4 thin films by pulsed laser deposition

    No full text
    This article presents the results on the growth and characterization of BaSnF4 thin films on glass substrates prepared by pulsed laser deposition technique. The structural results of BaSnF4 thin film carried out by glancing angle X-ray diffraction technique indicates the formation of the film with similar structure (tetragonal, P-4/nmm) to the bulk target material. The absorption coefficient and band gap of the film is determined by suitable analysis of the transmittance spectra. The transport properties of the thin films are studied using impedance spectroscopy in the temperature range of 323-573 K. The frequency-dependent imaginary part of impedance plot shows that the conductivity relaxation is non-Debye in nature. The scaling behavior of the imaginary part of impedance at various frequencies indicates temperature-independent relaxation behavior

    Detection of electrically formed photosensitive area in Ca-doped BiFeO3 thin films

    No full text
    We report on the visualization of n-p junctions formed by oxygen vacancy movement under the application of an electric field in a Ca-doped BiFeO3 thin film through spatially resolved scanning photocurrent mapping. The photocurrent mapping, in conjunction with the spectroscopic approach, provides clues to local electronic structures and defect levels associated with oxygen vacancies. These observations provide insights into the spatial redistribution of oxygen vacancies in an electric field. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774381]open111621sciescopu
    corecore