35 research outputs found

    Trauma induces apoptosis in human thoracolumbar intervertebral discs

    Get PDF
    BACKGROUND: Vertebral fractures resulting from high energy trauma often comprise the risk of posttraumatic degenerative changes in the affected intervertebral discs (IVD). Particularly in conservatively treated patients, or in cases after implant removal of an exclusively posterior stabilization, consecutive disc degeneration and the associated functional losing of the spinal segment clearly represent detrimental treatment results. In this regard, apoptosis of IVD cells has been suggested to be involved in the critical changes of the extracellular matrix. METHODS: To investigate whether fractures of the vertebrae induce apoptosis in the affected IVD, disc tissue from patients (n = 17) undergoing open reduction and internal fixation of thoracolumbar spine fractures were analysed in regards to caspase activity, apoptosis-receptor expression levels and gene expression of apoptosis-regulating proteins such as Bax and Bcl-2. Healthy IVD tissue (n = 3) obtained from patients undergoing surgical resection of adjacent vertebrae were used as control samples. RESULTS: In contrast to healthy control IVD tissues, samples from traumatic thoracolumbar IVD showed positive TUNEL staining and a significant increase of caspase-3/7 activity. Interestingly, analyses of the initiator caspase-8 and -9 revealed significantly increased activation levels compared to control values, suggesting the coexistent activation of both the extrinsic (receptor-mediated) and intrinsic (mitochondria-mediated) apoptosis pathway. Accordingly, expression levels of the Fas receptor (FasR) mRNA were significantly increased. Although the TNF receptor I (TNFR I) was only slightly upregulated, corresponding TNFα from trauma IVD presented significantly increased mRNA expression values. Furthermore, traumatic IVD cells demonstrated significantly reduced expression of the mitochondria-bound anti-apoptotic Bcl-2, thereby maintaining baseline transcriptional levels of the pro-apoptotic Bax protein when compared to control IVD cells. CONCLUSION: Our data suggest that thoracolumbar fractures induce early caspase-dependent apoptosis in IVD cells of the affected intervertebral disc, in part, by downregulation of the anti-apoptotic protein Bcl-2 (intrinsic apoptosis pathway), as well as signalling via the death receptor complex (TNFR I and FasR)

    Critical Early Roles for col27a1a and col27a1b in Zebrafish Notochord Morphogenesis, Vertebral Mineralization and Post-embryonic Axial Growth

    Get PDF
    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype

    Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are involved in the degradation of the extracellular matrix of the intervertebral disc. A SNP for guanine insertion/deletion (G/D), the -1607 promoter polymorphism, of the <it>MMP1 </it>gene was found significantly affecting promoter activity and corresponding transcription level. Hence it is a good candidate for genetic studies in DDD.</p> <p>Methods</p> <p>Southern Chinese volunteers between 18 and 55 years were recruited from the population. DDD in the lumbar spine was defined by MRI using Schneiderman's classification. Genomic DNA was isolated from the leukocytes and genotyping was performed using the Sequenom<sup>¼ </sup>platform. Association and Hardy-Weinberg equilibrium checking were assessed by Chi-square test and Mann-Whitney U test.</p> <p>Results</p> <p>Our results showed substantial evidence of association between -1607 promoter polymorphism of <it>MMP1 </it>and DDD in the Southern Chinese subjects. D allelic was significantly associated with DDD (p value = 0.027, odds ratio = 1.41 with 95% CI = 1.04–1.90) while Genotypic association on the presence of D allele was also significantly associated with DDD (p value = 0.046, odds ratio = 1.50 with 95% CI = 1.01–2.24). Further age stratification showed significant genotypic as well as allelic association in the group of over 40 years (genotypic: p value = 0.035, odds ratio = 1.617 with 95% CI = 1.033–2.529; allelic: p value = 0.033, odds ratio = 1.445 with 95% CI = 1.029–2.029). Disc bulge, annular tears and the Schmorl's nodes were not associated with the D allele.</p> <p>Conclusion</p> <p>We demonstrated that individuals with the presence of D allele for the -1607 promoter polymorphism of <it>MMP1 </it>are about 1.5 times more susceptible to develop DDD when compared with those having G allele only. Further association was identified in individuals over 40 years of age. Disc bulge, annular tear as well as Schmorl's nodes were not associated with this polymorphism.</p

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    corecore