9 research outputs found

    PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age related clonal hermatopoiesis and myeloid neoplasia

    No full text
    Acquired uniparental disomy (aUPD, also known as copy-neutral loss of heterozygosity) is a common feature of cancer cells and characterized by extended tracts of somatically-acquired homozygosity without any concurrent loss or gain of genetic material. The presumed genetic targets of many regions of aUPD remain unknown. Here we describe the association of chromosome 22 aUPD with mutations that delete the C-terminus of PRR14L in patients with chronic myelomonocytic leukemia (CMML), related myeloid neoplasms and age-related clonal hematopoiesis (ARCH). Myeloid panel analysis identified a median of three additional mutated genes (range 1–6) in cases with a myeloid neoplasm (n = 8), but no additional mutations in cases with ARCH (n = 2) suggesting that mutated PRR14L alone may be sufficient to drive clonality. PRR14L has very limited homology to other proteins and its function is unknown. ShRNA knockdown of PRR14L in human CD34+ cells followed by in vitro growth and differentiation assays showed an increase in monocytes and decrease in neutrophils, decrease in neutrophils, consistent with a CMML-like phenotype. RNA-Seq and cellular localization studies suggest a role for PRR14L in cell division. PRR14L is thus a novel, biallelically mutated gene and potential founding abnormality in myeloid neoplasms

    Regulatory T cells in the treatment of disease

    No full text
    International audienceRegulatory T (Treg) cells suppress inflammation and regulate immune system activity. In patients with systemic or organ-specific autoimmune diseases or those receiving transplanted organs, Treg cells are compromised. Approaches to strengthen Treg cell function, either by expanding them ex vivo and reinfusing them or by increasing the number or capacity of existing Treg cells, have entered clinical trials. Unlike the situation in autoimmunity, in patients with cancer, Treg cells limit the antitumour immune response and promote angiogenesis and tumour growth. Their immunosuppressive function may, in part, explain the failure of many immunotherapies in cancer. Strategies to reduce the function and/or number of Treg cells specifically in tumour sites are being investigated to promote antitumour immunity and regression. Here, we describe the current progress in modulating Treg cells in autoimmune disorders, transplantation and cancer

    T Cell and Antigen-Presenting Cell Subsets in the Tumor Microenvironment

    No full text

    Regulatory T cells in the treatment of disease

    No full text
    corecore