56 research outputs found

    Genomic Organization, Tissue Distribution and Functional Characterization of the Rat Pate Gene Cluster

    Get PDF
    The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20–60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Seismic passive earth resistance in submerged soils using modified pseudo-dynamic method with curved rupture surface

    No full text
    The sparsity of examination of seismic passive earth pressure acting on retaining wall holding soil backfill with full submergence, which is more common in waterfront areas, can be noticed from the literature. In the current study, a closed-form solution to compute the seismic passive earth pressure on nonvertical rigid retaining wall retaining a backfill with full submergence is proposed using the modified pseudo-dynamic approach. A nonlinear rupture surface (logarithmic spiral+straight line) in a submerged backfill of viscoelastic nature has been assumed. The presented modified pseudo-dynamic method overcomes the limitations of the existing pseudo-dynamic method for submerged soils. The proposed methodology has been thoroughly validated with the available literature. The influences of seismic acceleration coefficients, excess pore water pressure ratio, wall inclination, and soil and wall friction angles have been studied. It has been noticed that the consideration of excess pore pressure ratio leads to significant decrease in seismic passive resistance of the soil which in turn lead to extra hydraulic pressure acting on the wall in submerged backfill. There is a 57% decrease in seismic passive earth pressure coefficient as the wall inclination changes from -15 degrees to 15 degrees

    Stability of seawalls using modified pseudo-dynamic method under earthquake conditions

    No full text
    By using the modified pseudo-dynamic method for submerged soils this paper explores the seismic stability of seawall for the active condition of earth pressure. Different forces such as seismic active earth pressure, seismic inertia forces of the wall, non-breaking wave pressure, hydrostatic and hydrodynamic pressures are considered in the stability analysis. Limit equilibrium has been used, and expressions for the factor of safety against sliding and overturning mode of failure have been proposed. The proposed methodology overcomes the limitations of existing pseudo-dynamic method for submerged soils. A detailed parametric study has been conducted by varying different parameters and results are presented in the form of design charts for computation of factor of safety against sliding and overturning mode of failures. It was noticed that the influences of soil friction angle, seismic acceleration coefficient, wall inclination and excess pore pressure are significant when compared to the other parameters. The value of factor of safety against the sliding mode of failure is increasing by about 62% when the value of soil frictional angle is increased from 30 to 40. It was also found that the factor of safety against overturning mode of failure is decreasing by about 22% as the value of excess pore pressure ratio increases from 0 to 0.75. The proposed method with closed-form solutions can be used for the seismic design of seawalls. (C) 2017 Elsevier Ltd. All rights reserved

    Influence of non-breaking wave force on seismic stability of seawall for passive condition

    No full text
    Proper design of seawall in earthquake prone region is one of the major concerns in geotechnical earthquake engineering. This paper presents the stability analysis of seawall under the combined action of earthquake forces, non-breaking wave force, hydrostatic and hydrodynamic forces and uplift force. Stability of seawall is assessed in terms of its factor of safety against landward sliding and landward overturning modes of failures. Seismic passive earth resistance has been calculated using pseudo-static approach. A detailed parametric study has been conducted to study the effect of non-breaking wave height, depth of water on seaward and land ward sides, soil and wall friction angles, and horizontal and vertical seismic accelerations. The factor of safety against overturning mode of failure decreases by about 52%, for a change in the ratio of non-breaking wave height to the depth of water on seaward side from 0 to 0.60. Present study shows that the seismic stability of seawall is more sensitive to non-breaking wave height, soil friction angle, wall friction angle and horizontal seismic acceleration. Proposed closed form solutions and design charts can be used for the seismic design of seawall for passive case under the combined action of earthquake and non-breaking wave forces. (C) 2016 Elsevier Ltd. All rights reserved

    Generalized Seismic Active Thrust on a Retaining Wall with Submerged Backfill Using a Modified Pseudodynamic Method

    No full text
    The appropriate estimation of seismic earth pressures acting on retaining walls supporting submerged backfill is an important area of research in earthquake geotechnical engineering. There is a scarcity of research work on retaining walls with submerged soil under seismic conditions in the literature. In this paper, closed-form generalized solutions for computing seismic active earth thrust and its distribution on nonvertical rigid retaining walls with fully submerged backfill are proposed using the modified pseudodynamic approach. The seismic analysis of retaining walls was carried out with a planar rupture surface in viscoelastic submerged backfill. The proposed modified pseudodynamic analysis satisfied the zero-stress-boundary condition on a free surface and considered the standing shear and primary waves, soil damping, amplification in the backfill, and an excess pore-pressure ratio in the backfill. A detailed parametric study was performed to gain an understanding of the effects of different parameters, including the horizontal seismic acceleration coefficient, excess pore-water-pressure ratio, period of lateral shaking, damping ratio, wall inclination, and soil-friction and wall-friction angles. A comparison of the present study results and the existing analytical and experimental studies resulted in good agreement
    corecore