60 research outputs found

    Distribution of hydrogen peroxide and methylhydroperoxide over the Pacific and South Atlantic Oceans

    Get PDF
    The gas phase hydrogen peroxide and methylhydroperoxide concentrations were measured in the troposphere over the tropical Pacific Ocean as a component of NASA's Global Tropospheric Experiment/Pacific Exploratory Mission-Tropics A field campaign. Flights on two aircraft covered the Pacific from 70°S to 60°N and 110°E to 80°W and South Atlantic from 40°S to 15°N and 45°W to 70°E, and extending from 76 to 13,000 m altitude. H2O2 and CH3OOH have the highest concentrations at a given altitude at the equator and decrease with increasing latitude in both the northern and southern hemispheres. Above 4 km the gradient is substantially reduced for both H2O2 and CH3OOH with latitude, and at altitudes in excess of 8 km there is no latitudinal dependence. H2O2 and CH3OOH exhibit maximum mixing ratios between 1 and 2 km at all latitudes. The mean mixing ratio of H2O2 at the equator was 1600 ± 600 parts per trillion by volume (pptv) decreasing to 500 ± 250 pptv at latitudes greater than 55° north and south between 1 and 2 km altitude. CH3OOH at the equator was 1400 ± 250 pptv, decreasing to 330 ± 200 pptv at high latitudes at altitudes between 1 and 2 km. The concentration of peroxides at high latitudes in the northern hemisphere was generally a factor of 2 higher than at corresponding latitudes in the southern hemisphere. The ratio of H2O2 to CH3OOH was between 1 and 2 from 45°S to 35°N at altitudes below 4 km. Between 5° to 15°N the ratio is less than 1, due to preferential removal of H2O2 in the Intertropical Convergence Zone. Copyright 1999 by the American Geophysical Union

    Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)

    Get PDF
    Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union

    Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone

    Get PDF
    The Pacific Exploratory Mission (PEM)-Tropics provided extensive aircraft data to study the atmospheric chemistry of tropospheric air in Pacific Ocean regions, extending from Hawaii to New Zealand and from Fiji to east of Easter Island. This region, especially the tropics, includes some of the cleanest tropospheric air of the world and, as such, is important for studying atmospheric chemical budgets and cycles. The region also provides a sensitive indicator of the global-scale impact of human activity on the chemistry of the troposphere, and includes such important features as the Pacific "warm pool," the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), and Walker Cell circulations. PEM-Tropics was conducted from August to October 1996. The ITCZ and SPCZ are major upwelling regions within the South Pacific and, as such, create boundaries to exchange of tropospheric air between regions to the north and south. Chemical data obtained in the near vicinity of the ITCZ and the SPCZ are examined. Data measured within the convergent zones themselves are not considered. The analyses show that air north and south of the convergent zones have different chemical signatures, and the signatures are reflective of the source regions and transport histories of the air. Air north of the ITCZ shows a modest urban/industrialized signature compared to air south of the ITCZ. The chemical signature of air south of the SPCZ is dominated by combustion emissions from biomass burning, while air north of the SPCZ is relatively clean and of similar composition to ITCZ south air. Chemical signature differences of air north and south of the zones are most pronounced at altitudes below 5 km, and, as such, show that the ITCZ and SPCZ are effective low-altitude barriers to the transport of tropospheric air. At altitudes of 8 to 10 km, chemical signatures are less dissimilar, and air backward trajectories (to 10 days) show cross-convergent-zone flow. At altitudes below about 5 km, little cross-zonal flow is observed. Chemical signatures presented include over 30 trace chemical species including ultrafine, fine, and heated-fine (250°C) aerosol. Copyright 1999 by the American Geophysical Union

    Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B

    Get PDF
    Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
    • …
    corecore