24 research outputs found

    Critical Limb Ischemia

    Get PDF
    Critical limb ischemia (CLI), defined as chronic ischemic rest pain, ulcers, or gangrene attributable to objectively proven arterial occlusive disease, is the most advanced form of peripheral arterial disease. Traditionally, open surgical bypass was the only effective treatment strategy for limb revascularization in this patient population. However, during the past decade, the introduction and evolution of endovascular procedures have significantly increased treatment options. In a certain subset of patients for whom either surgical or endovascular revascularization may not be appropriate, primary amputation remains a third treatment option. Definitive high-level evidence on which to base treatment decisions, with an emphasis on clinical and cost effectiveness, is still lacking. Treatment decisions in CLI are individualized, based on life expectancy, functional status, anatomy of the arterial occlusive disease, and surgical risk. For patients with aortoiliac disease, endovascular therapy has become first-line therapy for all but the most severe patterns of occlusion, and aortofemoral bypass surgery is a highly effective and durable treatment for the latter group. For infrainguinal disease, the available data suggest that surgical bypass with vein is the preferred therapy for CLI patients likely to survive 2 years or more, and for those with long segment occlusions or severe infrapopliteal disease who have an acceptable surgical risk. Endovascular therapy may be preferred in patients with reduced life expectancy, those who lack usable vein for bypass or who are at elevated risk for operation, and those with less severe arterial occlusions. Patients with unreconstructable disease, extensive necrosis involving weight-bearing areas, nonambulatory status, or other severe comorbidities may be considered for primary amputation or palliative measures

    Cost-Effectiveness of New Cardiac and Vascular Rehabilitation Strategies for Patients with Coronary Artery Disease

    Get PDF
    Objective: Peripheral arterial disease (PAD) often hinders the cardiac rehabilitation program. The aim of this study was evaluating the relative cost-effectiveness of new rehabilitation strategies which include the diagnosis and treatment of PAD in patients with coronary artery disease (CAD) undergoing cardiac rehabilitation. Data Sources: Best-available evidence was retrieved from literature and combined with primary data from 231 patients. Methods: We developed a Markov decision model to compare the following treatment strategies: 1. cardiac rehabilitation only; 2. ankle-brachial index (ABI) if cardiac rehabilitation fails followed by diagnostic work-up and revascularization for PAD if needed; 3. ABI prior to cardiac rehabilitation followed by diagnostic work-up and revascularization for PAD if needed. Quality-adjusted-life years (QALYs), life-time costs (US ),incrementalcosteffectivenessratios(ICER),andgaininnethealthbenefits(NHB)inQALYequivalentswerecalculated.Athresholdwillingnesstopayof), incremental cost-effectiveness ratios (ICER), and gain in net health benefits (NHB) in QALY equivalents were calculated. A threshold willingness-to-pay of 75 000 was used. Results: ABI if cardiac rehabilitation fails was the most favorable strategy with an ICER of 44251perQALYgainedandanincrementalNHBcomparedtocardiacrehabilitationonlyof0.03QALYs(9544 251 per QALY gained and an incremental NHB compared to cardiac rehabilitation only of 0.03 QALYs (95% CI: −0.17, 0.29) at a threshold willingness-to-pay of 75 000/QALY. After sensitivity analysis, a combined cardiac and vascular rehabilitation program increased the success rate and would dominate the other two strategies with total lifetime costs of $30 246 a quality-adjusted life expectancy of 3.84 years, and an incremental NHB of 0.06 QALYs (95%CI:−0.24, 0.46) compared to current practice. The results were robust for other different input parameters. Conclusion: ABI measurement if cardiac rehabilitation fails followed by a diagnostic work-up and revascularization for PAD if needed are potentially cost-effective compared to cardiac rehabilitation only

    Coral-reef-aorta

    No full text

    Crossing chronic total occlusions with the Ocelot system: the initial European experience

    No full text
    Aims: The aim of the study was to determine the safety, efficacy and feasibility of a new chronic total occlusion (CTO) device using optical coherence tomography (OCT) technology, the Ocelot catheter (Avinger, Inc., Redwood City, CA, USA), for crossing of SFA CTOs following guidewire failure.Methods and results: Prospective, multicentre, market preference testing. Thirty-three patients with confirmed CTO (99-100% stenosis by visual estimate) of their superficial femoral artery (SFA) were treated between September 28, 2011, and December 9, 2011, at three European centres. Ocelot crossed 94% (31/33) of CTOs, allowing guidewire placement in the distal true lumen. All (100%) lesions were treated without any major adverse safety events. Procedural time and contrast dose were significantly reduced (p<0.0001) when compared with a similar, non-OCT-guided CTO crossing device (Wildcat catheter; Avinger, Inc.). Overall physician feedback on the catheter performance was positive with an 87% average rating of excellent or good across seven categories. Performance ratings of Ocelot's OCT imaging guidance were consistently positive with an 86% average rating of excellent or good across five OCT categories.Conclusions: The Ocelot catheter combines advanced CTO crossing technology with real-time OCT guidance. When compared with a similar non-OCT-guided catheter, crossing efficacy and safety profile improved. Total procedure time and contrast volumes were significantly reduced. The Ocelot is a safe, efficient and effective tool for crossing CTOs
    corecore