66 research outputs found

    Faecalibacterium diversity in dairy cow milk.

    Get PDF
    The bacterial species, Faecalibacterium prausnitzii, beneficial to humans and animals and found in mammalian and avian gut, is also occasionally found in dairy cow milk. It is one of the butyrate-producing bacteria of the colon, has anti-inflammatory properties and its abundance in the gut is negatively correlated with obesity in humans. Several strains differing in their functional capability, have been identified. It is important therefore, milk being a potential source of F. prausnitzii as a novel probiotic, to investigate the diversity of this species in bovine milk. Using 16s rRNA gene amplicons we find 292 different dereplicated Faecalibacterium-related amplicons in a herd of 21 dairy cows. The distribution of the 20 most abundant amplicons with >97% identity to a Greengenes OTU varies from cow to cow. Clustering of the 292 pooled sequences from all cows at 99.6% identity finds 4 likely Faecalibacterium phylotypes with >98.5% identity to an F. prausnitzii reference sequence. Sequence alignment and phylogenetic analysis shows these phylotypes are distinct from 34 other species from the Ruminococcaceae family and displaying the sequence clusters as a network illustrates how each cluster is composed of sequences from multiple cows. We conclude there are several phylotypes of Faecalibacterium prausnitzii (the only species so far defined for the genus) in this dairy herd with cows being inoculated with a mixture of several strains from a common source. We conclude that not only can Faecalibacterium be detected in dairy cow milk (as noted by others) but that there exist multiple different strains in the milk of a dairy herd. Therefore milk, as an alternative to faeces, offers the opportunity of discovering new strains with potential probiotic application

    Heat Stress in Dairy Cattle Alters Lipid Composition of Milk.

    Get PDF
    Heat stress, potentially affecting both the health of animals and the yield and composition of milk, occurs frequently in tropical, sub-tropical and temperate regions. A simulated acute heat stress experiment was conducted in controlled-climate chambers and milk samples collected before, during and after the heat challenge. Milk lipid composition, surveyed using LC-MS, showed significant changes in triacylglycerol (TAG) and polar lipid profiles. Heat stress (temperature-humidity index up to 84) was associated with a reduction in TAG groups containing short- and medium-chain fatty acids and a concomitant increase in those containing long-chain fatty acids. The abundance of five polar lipid classes including phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, lysophosphatidylcholine and glucosylceramide, was found to be significantly reduced during heat stress. Lysophosphatidylcholine, showing the greatest reduction in concentration, also displayed a differential response between heat tolerant and heat susceptible cows during heat stress. This phospholipid could be used as a heat stress biomarker for dairy cattle. Changes in TAG profile caused by heat stress are expected to modify the physical properties of milk fat, whereas the reduction of phospholipids may affect the nutritional value of milk. The results are discussed in relation to animal metabolism adaptation in the event of acute heat stress

    Genes of the RNASE5 pathway contain SNP associated with milk production traits in dairy cattle

    Get PDF
    BACKGROUND: Identification of the processes and mutations responsible for the large genetic variation in milk production among dairy cattle has proved challenging. One approach is to identify a biological process potentially involved in milk production and to determine the genetic influence of all the genes included in the process or pathway. Angiogenin encoded by angiogenin, ribonuclease, RNase A family 5 (RNASE5) is relatively abundant in milk, and has been shown to regulate protein synthesis and act as a growth factor in epithelial cells in vitro. However, little is known about the role of angiogenin in the mammary gland or if the polymorphisms present in the bovine RNASE5 gene are associated with lactation and milk production traits in dairy cattle. Given the high economic value of increased protein in milk, we have tested the hypothesis that RNASE5 or genes in the RNASE5 pathway are associated with milk production traits. First, we constructed a "RNASE5 pathway" based on upstream and downstream interacting genes reported in the literature. We then tested SNP in close proximity to the genes of this pathway for association with milk production traits in a large dairy cattle dataset. RESULTS: The constructed RNASE5 pathway consisted of 11 genes. Association analysis between SNP in 1 Mb regions surrounding these genes and milk production traits revealed that more SNP than expected by chance were associated with milk protein percent (P < 0.05 significance). There was no significant association with other traits such as milk fat content or fertility. CONCLUSIONS: These results support a role for the RNASE5 pathway in milk production, specifically milk protein percent, and indicate that polymorphisms in or near these genes explain a proportion of the variation for this trait. This method provides a novel way of understanding the underlying biology of lactation with implications for milk production and can be applied to any pathway or gene set to test whether they are responsible for the variation of complex traits

    Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition

    Get PDF
    BACKGROUND: The maintenance of lactation in mammals is the result of a balance between competing signals from mammary development, prolactin signalling and involution pathways. Dairy cattle are an interesting case study to investigate the effect of polymorphisms that affect the function of genes in these pathways. In dairy cattle, lactation yields and milk composition (for example protein percentage and fat percentage) are routinely recorded, and these vary greatly between individuals. In this study, we test 8058 single nucleotide polymorphisms in or close to genes in these pathways for association with milk production traits and determine the proportion of variance explained by each pathway, using data on 16 812 dairy cattle, including Holstein-Friesian and Jersey bulls and cows. RESULTS: Single nucleotide polymorphisms close to genes in the mammary development, prolactin signalling and involution pathways were significantly associated with milk production traits. The involution pathway explained the largest proportion of genetic variation for production traits. The mammary development pathway also explained additional genetic variation for milk volume, fat percentage and protein percentage. CONCLUSIONS: Genetic variants in the involution pathway explained considerably more genetic variation in milk production traits than expected by chance. Many of the associations for single nucleotide polymorphisms in genes in this pathway have not been detected in conventional genome-wide association studies. The pathway approach used here allowed us to identify some novel candidates for further studies that will be aimed at refining the location of associated genomic regions and identifying polymorphisms contributing to variation in lactation volume and milk composition

    Fine-mapping sequence mutations with a major effect on oligosaccharide content in bovine milk.

    Get PDF
    Human milk contains abundant oligosaccharides (OS) which are believed to have strong health benefits for neonates. OS are a minor component of bovine milk and little is known about how the production of OS is regulated in the bovine mammary gland. We have measured the abundance of 12 major OS in milk of 360 cows, which had high density SNP marker genotypes. Most of the OS were found to be highly heritable (h2 between 50 and 84%). A genome-wide association study allowed us to fine-map several QTL and identify candidate genes with major effects on five OS. Among them, a putative causal mutation close to the ABO gene on Chromosome 11 accounted for approximately 80% of genetic variance for two OS, N-acetylgalactosaminyllactose and lacto-N-neotetraose. This mutation lies very close to a variant associated with the expression levels of ABO. A third QTL mapped close to ST3GAL6 on Chromosome 1 explaining 33% of genetic variation of an abundant OS, 3'-sialyllactose. The presence of major gene effects suggests that targeted marker-assisted selection would lead to a significant increase in the level of these OS in milk. This is the first attempt to map candidate genes and causal mutations for bovine milk OS
    • …
    corecore