766 research outputs found
Myocardial infarction, ST-elevation and non-ST-elevation myocardial infarction and modelled daily pollution concentrations; a case-crossover analysis of MINAP data
Objectives: To investigate associations between daily concentrations of air pollution and myocardial infarction (MI), ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI).
Methods: Modelled daily ground-level gaseous, total and speciated particulate pollutant concentrations and ground-level daily mean temperature, all at 5 km x 5 km horizontal resolution, were linked to 202,550 STEMI and 322,198 NSTEMI events recorded on the England and Wales Myocardial Ischaemia National Audit Project (MINAP) database. The study period was 2003-2010. A case-crossover design was used, stratified by year, month, and day of the week. Data were analysed using conditional logistic regression, with pollutants modelled as unconstrained distributed lags 0-2 days. Results are presented as percentage change in risk per 10 µg/m3 increase in the pollutant relevant metric, having adjusted for daily mean temperature, public holidays, weekly flu consultation rates, and a sine-cosine annual cycle.
Results: There was no evidence of an association between MI or STEMI and any of O3, NO2, PM2.5, PM10 or selected PM2.5 components (sulphate and elemental carbon). For NSTEMI there was a positive association with daily maximum 1-hour NO2 (0.27% (95% CI: 0.01 to 0.54)), which persisted following adjustment for O3 and adjustment for PM2.5. The association appeared to be confined to the midland and southern regions of England and Wales.
Conclusions: The study found no evidence of an association between the modelled pollutants (including components) investigated and STEMI but did find some evidence of a positive association between NO2 and NSTEMI. Confirmation of this association in other studies is required
Task-based estimation of past exposures to 60-hertz magnetic and electric fields at an electrical utility
Objectives Past exposures of electric utility workers to extremely low-frequency (ELF) magnetic (B) and electric fields (E) in Québec were estimated.
Methods The current intensities were measured and durations of exposures determined for tasks or work locations in 14 job categories. Past task or location intensities were extrapolated from the present on the basis of interviews with long-term workers and utility personnel. Past task or location durations were estimated for the long-term workers. Time-weighted average (TWA) exposures for past periods were reconstructed for jobs from the intensity and duration estimates.
Results Magnetic fields were estimated to have increased the most over time for substation and distribution-line jobs. Magnetic field exposures for jobs in the generation and transmission of electricity were estimated to have increased very little. For substation jobs, the ratios of magnetic fields in 1945 to those in 1990 ranged from 0.42 to 0.69; the corresponding figures for distribution-line jobs ranged from 0.36 to 0.94. For electric fields in substations, the estimated increase over time was less than for magnetic fields, the 1945:1990 ratios ranging from 0.59 to 0.88. For the distribution line jobs, the 1945:1990 ratios for electric fields were less than 1.0 in 4 cases (0.6 to 0.89), more than 1.0 in 3 others (1.13 to 2.01) and unchanged in 1.
Conclusion Reconstruction of TWA exposures allowed changes in the intensity and the duration of exposures to be considered separately. Documentation of the intensity and duration of exposures for different tasks allows exposure reconstruction for jobs that have ceased to exist. The method is applicable elsewhere if exposure monitoring records allow the level and duration of exposures for tasks or locations to be calculated and if estimates of past durations and intensities of exposures can be reliably obtained
Exposures of children in Canada to 60-Hz magnetic and electric fields
Objectives This study characterized personal exposures of Canadian children to 60-Hz magnetic and electric fields and explained the variability. Methods Altogether 382 Canadian children up to 15 years of age wore meters recording 60-Hz electric and magnetic fields over 2 days. Meter location was recorded. Thereafter, meters recorded fields in the center of the children's bedrooms for 24 h. Personal exposures were calculated for home, school or day care, outside the home, bedroom at night, and all categories combined (total). Results The arithmetic mean (AM) was 0.121 mT [geometric mean (GM): 0.085 mT), range 0.01-0.8 mT] for total magnetic fields. Fifteen percent of the total exposures exceeded 0.2 mT. The AM of the total electric fields was 14.4 (GM 12.3, range 0.82-64.7) V/m. By location category, the highest and lowest magnetic fields occurred at home during the day (0.142 mT) and during the night (0.112 mT), respectively. Measurements during sleep provided the highest correlation with total magnetic field exposure. Province of measurement explained 14.7% of the variation in the logarithms of total magnetic fields, and season accounted for an additional 1.5%. Electric heating, air conditioning, and housing type appeared to be useful predictors of magnetic field exposures. Conclusions In identifying differences in children's magnetic field exposures between provinces, measurements at night provided the best surrogate for predicting total magnetic field exposure, followed by at-home exposure and 24-h bedroom measurements. Electrical heating and air conditioning, wiring type, and type of housing appear to be promising indicators of magnetic field levels
Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001-2010
This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  ×  5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model–measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, PM2. 5, and PM10 (daily maximum 8 h running mean for O3). The comparison was temporally and spatially comprehensive, covering a 10-year period (2 years for PM2. 5) and all non-roadside measurement data from the UK national reference monitor network, which applies consistent operational and QA/QC procedures for each pollutant (44, 47, 24, and 30 sites for NO2, O3, PM2. 5, and PM10, respectively). Two important statistics highlighted in the literature for evaluation of air quality model output against policy (and hence health)-relevant standards – correlation and bias – together with root mean square error, were evaluated by site type, year, month, and day-of-week. Model–measurement statistics were generally better than, or comparable to, values that allow for realistic magnitudes of measurement uncertainties. Temporal correlations of daily concentrations were good for O3, NO2, and PM2. 5 at both rural and urban background sites (median values of r across sites in the range 0.70–0.76 for O3 and NO2, and 0.65–0.69 for PM2. 5), but poorer for PM10 (0.47–0.50). Bias differed between environments, with generally less bias at rural background sites (median normalized mean bias (NMB) values for daily O3 and NO2 of 8 and 11 %, respectively). At urban background sites there was a negative model bias for NO2 (median NMB  =  −29 %) and PM2. 5 (−26 %) and a positive model bias for O3 (26 %). The directions of these biases are consistent with expectations of the effects of averaging primary emissions across the 5 km  ×  5 km model grid in urban areas, compared with monitor locations that are more influenced by these emissions (e.g. closer to traffic sources) than the grid average. The biases are also indicative of potential underestimations of primary NOx and PM emissions in the model, and, for PM, with known omissions in the model of some PM components, e.g. some components of wind-blown dust. There were instances of monthly and weekday/weekend variations in the extent of model–measurement bias. Overall, the greater uniformity in temporal correlation than in bias is strongly indicative that the main driver of model–measurement differences (aside from grid versus monitor spatial representivity) was inaccuracy of model emissions – both in annual totals and in the monthly and day-of-week temporal factors applied in the model to the totals – rather than simulation of atmospheric chemistry and transport processes. Since, in general for epidemiology, capturing correlation is more important than bias, the detailed analyses presented here support the use of data from this model framework in air pollution epidemiology
Reporting accuracy of packed lunch consumption among Danish 11-year-olds differ by gender.
Background: Packed lunch is the dominant lunch format in many countries including Denmark. School lunch is consumed unsupervised, and self-reported recalls are appropriate in the school setting. However, little is known about the accuracy of recalls in relation to packed lunch. Objective: To assess the qualitative recall accuracy of self-reported consumption of packed lunch among Danish 11-year-old children in relation to gender and dietary assessment method. Design: A cross-sectional dietary recall study of packed lunch consumption. Digital images (DIs) served as an objective reference method to determine food items consumed. Recalls were collected with a lunch recall questionnaire (LRQ) comprising an open-ended recall (OE-Q) and a pre-coded food group prompted recall (PC-Q). Individual interviews (INTs) were conducted successively. The number of food items was identified and accuracy was calculated as match rates (% identified by DIs and reported correctly) and intrusion rates (% not identified by DIs but reported) were determined. Setting and subjects: Three Danish public schools from Copenhagen. A total of 114 Danish 11-year-old children, mean (SE) age=11.1 (0.03), and body mass index=18.2 (0.26). Results: The reference (DIs) showed that girls consumed a higher number of food items than boys [mean (SE) 5.4 (0.25) vs. 4.6 (0.29) items (p=0.05)]. The number of food items recalled differed between genders with OE-Q recalls (p=0.005) only. Girls’ interview recalls were more accurate than boys’ with higher match rates (p=0.04) and lower intrusion rates (p=0.05). Match rates ranged from 67–90% and intrusion rates ranged from 13–39% with little differences between girls and boys using the OE-Q and PC-Q methods. Conclusion: Dietary recall validation studies should not only consider match rates as an account of accuracy. Intrusions contribute to over-reporting in non-validation studies, and future studies should address recall accuracy and inaccuracies in relation to gender and recall method
Breastfeeding : a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids
Background: The presence of perfluoroalkyl acids (PFAAs) in breast milk has been documented, but their lactational transfer has been rarely studied. Determination of the elimination rates of these chemicals during breastfeeding is important and critical for assessing exposure in mothers and infants.
Objectives: We aimed to investigate the association between breastfeeding and maternal serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). For a subset of the population, for whom we also have their infants’ measurements, we investigated associations of breastfeeding with infant serum PFAA concentrations.
Methods: The present analysis included 633 women from the C8 Science Panel Study who had a child < 3.5 years of age and who provided blood samples and reported detailed information on breastfeeding at the time of survey. PFAA serum concentrations were available for all mothers and 8% (n = 49) of the infants. Maternal and infant serum concentrations were regressed on duration of breastfeeding.
Results: Each month of breastfeeding was associated with lower maternal serum concentrations of PFOA (–3%; 95% CI: –5, –2%), PFOS (–3%; 95% CI: –3, –2%), PFNA (–2%; 95% CI: –2, –1%), and PFHxS (–1%; 95% CI: –2, 0%). The infant PFOA and PFOS serum concentrations were 6% (95% CI: 1, 10%) and 4% (95% CI: 1, 7%) higher per month of breastfeeding.
Conclusions: Breast milk is the optimal food for infants, but is also a PFAA excretion route for lactating mothers and exposure route for nursing infants
Volunteering in the care of people with severe mental illness: a systematic review
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Accuracy of responses from postal surveys about continuing medical education and information behavior: experiences from a survey among German diabetologists
BACKGROUND: Postal surveys are a popular instrument for studies about continuing medical education habits. But little is known about the accuracy of responses in such surveys. The objective of this study was to quantify the magnitude of inaccurate responses in a postal survey among physicians. METHODS: A sub-analysis of a questionnaire about continuing medical education habits and information management was performed. The five variables used for the quantitative analysis are based on a question about the knowledge of a fictitious technical term and on inconsistencies in contingency tables of answers to logically connected questions. RESULTS: Response rate was 52%. Non-response bias is possible but seems not very likely since an association between demographic variables and inconsistent responses could not be found. About 10% of responses were inaccurate according to the definition. CONCLUSION: It was shown that a sub-analysis of a questionnaire makes a quantification of inaccurate responses in postal surveys possible. This sub-analysis revealed that a notable portion of responses in a postal survey about continuing medical education habits and information management was inaccurate
- …