902 research outputs found

    The formation and evolution of very massive stars in dense stellar systems

    Full text link
    The early evolution of dense stellar systems is governed by massive single star and binary evolution. Core collapse of dense massive star clusters can lead to the formation of very massive objects through stellar collisions (M≥M\geq 1000 \msun). Stellar wind mass loss determines the evolution and final fate of these objects, and decides upon whether they form black holes (with stellar or intermediate mass) or explode as pair instability supernovae, leaving no remnant. We present a computationaly inexpensive evolutionary scheme for very massive stars that can readily be implemented in an N-body code. Using our new N-body code 'Youngbody' which includes a detailed treatment of massive stars as well as this new scheme for very massive stars, we discuss the formation of intermediate mass and stellar mass black holes in young starburst regions. A more detailed account of these results can be found in Belkus et al. 2007.Comment: 2 pages, 2 figures. To appear in conference proceedings for IAUS246, 200

    Binary populations and stellar dynamics in young clusters

    Full text link
    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, Eta Carinae, Zeta Puppis, Gamma Velorum and WR 140.Comment: Contributed paper IAU 250: Massive Stars as Cosmic Engine

    Young Crab-like pulsars and luminous X-ray sources in starbursts and optically dull galaxies

    Full text link
    Recent Chandra observations of nearby galaxies have revealed a number of ultraluminous X-ray sources (ULXs) with super-Eddington luminosities, away from the central regions of non-active galaxies. The nature of these sources is still debated. We argue that a fraction of them could be young, Crab-like pulsars, the X-ray luminosity of which is powered by rotation. We use the pulsar birth parameters estimated from radio pulsar data to compute the steady-state pulsar X-ray luminosity distribution as a function of the star formation rate (SFR) in the galaxy. We find that ~10% of optically dull galaxies are expected to have a source with L_x >~ 10^{39} erg/s, while starbursts galaxies should each have several of these sources. We estimate that the X-ray luminosity of a few percents of galaxies is dominated by a single bright pulsar with L_x >~10^{39} erg/s, roughly independently of its SFR. We discuss observational diagnostics that can help distinguish the young pulsar population in ULXs.Comment: 17 pages, 4 figures, accepted to Ap

    The Extent of Seasonally Suitable Habitats May Limit Forage Fish Production in a Temperate Estuary

    Get PDF
    The sustained production of sufficient forage is critical to advancing ecosystem-based management, yet factors that affect local abundances and habitat conditions necessary to support aggregate forage production remain largely unexplored. We quantified suitable habitat in the Chesapeake Bay and its tidal tributaries for four key forage fishes: juvenile spotted hake Urophycis regia, juvenile spot Leiostomus xanthurus, juvenile weakfish Cynoscion regalis, and bay anchovy Anchoa mitchilli. We used information from monthly fisheries surveys from 2000 to 2016 coupled with hindcasts from a spatially interpolated model of dissolved oxygen and a 3-D hydrodynamic model of the Chesapeake Bay to identify influential covariates and construct habitat suitability models for each species. Suitable habitat conditions resulted from a complex interplay between water quality and geophysical properties of the environment and varied among species. Habitat suitability indices ranging between 0 (poor) and 1 (superior) were used to estimate seasonal and annual extents of suitable habitats. Seasonal variations in suitable habitat extents in Chesapeake Bay, which were more pronounced than annual variations during 2000–2016, reflected the phenology of estuarine use by these species. Areas near shorelines served as suitable habitats in spring for juvenile spot and in summer for juvenile weakfish, indicating the importance of these shallow areas for production. Tributaries were more suitable for bay anchovy in spring than during other seasons. The relative baywide abundances of juvenile spot and bay anchovy were significantly related to the extent of suitable habitats in summer and winter, respectively, indicating that Chesapeake Bay habitats may be limiting for these species. In contrast, the relative baywide abundances of juvenile weakfish and juvenile spotted hake varied independently of the spatial extent of suitable habitats. In an ecosystem-based approach, areas that persistently provide suitable conditions for forage species such as shoreline and tributary habitats may be targeted for protection or restoration, thereby promoting sufficient production of forage for predators. Further, quantitative habitat targets or spatial thresholds may be developed for habitat-limited species using estimates of the minimum habitat area required to produce a desired abundance or biomass; such targets or thresholds may serve as spatial reference points for management

    Extent of Suitable Habitats for Juvenile Striped Bass: Dynamics and Implications for Recruitment in Chesapeake Bay

    Get PDF
    The production of striped bass Morone saxatilis in Chesapeake Bay supports recreational and commercial fisheries along the Atlantic coast of the United States, but factors that contribute to high abundances of juvenile life stages are not fully understood. In this study, we characterized and quantified suitable and optimal habitat conditions in the Chesapeake Bay for two age groups of juvenile striped bass in discrete portions of the Bay: young-of-the-year (age-0) fish in shoreline and nearshore habitats, and resident sub-adults (age-1 to -4) in the mainstem and Bay-wide. We coupled information from 24 years of monthly fisheries surveys with hindcasts from a 3-D hydrodynamic model of the Bay and a numerical model of dissolved oxygen (DO) conditions. These models provided estimates of habitat conditions for 1996 to 2019 for 33 metrics of temperature, salinity, current speed, depth, DO, and physical features of habitats. Boosted regression trees were used to identify influential habitat covariates for each group, and those covariates were used to develop nonparametric habitat suitability models based on environmental conditions at the time and location of sampling. Habitat suitability indices (HSI), ranging from 0 (poor habitat) to 1 (high-quality habitat), were assigned to each grid in the 3-D model for each season in 1996 to 2019. We quantified suitable (HSI \u3e 0.5) and optimal (HSI \u3e 0.7) on a seasonal and annual basis, and across a range of environmental conditions (wet vs. dry years; warm vs. cool years). We also estimated the persistence of suitable habitats through time as the percent of years during which conditions were suitable at a given site; persistence allowed us to identify areas of the Bay and tidal tributaries that consistently supported suitable conditions for juvenile striped bass. Specific habitat conditions that defined suitable and optimal habitats for age-0 and age 1-4 striped bass varied across seasons and among years, reflecting changes in water quality conditions in Chesapeake Bay and changes in habitat use by striped bass during their first few years of life. Metrics of water quality, especially dissolved oxygen, were consistently identified as important covariates for juvenile striped bass; these conditions are of greater importance in determining habitat suitability than specific physical features especially for a highly mobile species and may be used to inform existing decision-support tools. In our study, we found no evidence that habitat use by striped bass in Chesapeake Bay was moderated by a strict threshold for any given covariate, and average to above-average abundances of striped bass were encountered in sub-suitable conditions; thus, habitat use resulted from a combination of abiotic, and likely biotic, conditions. Neither age group exhibited a statistically significant relationship between relative abundance and the extent of suitable habitats, however, for nearly all ages and seasons, relative abundance increased with greater extent of suitable habitats suggesting that detection of this relationship requires additional annual observations. A significant decrease in the extent of suitable habitat through time (1996 to present) was observed in spring and early summer, reflecting a change in suitable environmental conditions; with additional study years, declines in the relative abundance of age-0 and age 1-4 fish may be observed as suitability of habitats continues to decline. Given the high degree of interannual variability in abundance that is characteristic of estuarine-dependent species like striped bass, the availability and quantity of suitable and high-quality habitats at the scale of individual tributaries and Bay-wide may play an important role in production of this species

    Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline

    Get PDF
    Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, and Acaulospora sp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade

    Linguistics

    Get PDF
    Contains reports on seven research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02)United States Air Force, Electronic Systems Division (Contract AF19(628)-2487
    • …
    corecore