2,881 research outputs found
Asymmetry in self-assembled quantum dot-molecules made of identical InAs/GaAs quantum dots
We show that a diatomic dot molecule made of two identical, vertically
stacked, strained InAs/GaAs self-assembled dots exhibits an asymmetry in its
single-particle and may-particle wavefunctions. The single-particle wave
function is asymmetric due to the inhomogeneous strain, while the asymmetry of
the many-particle wavefunctions is caused by the correlation induced
localization: the lowest singlet and triplet states
show that the two electrons are each localized on different dots within the
molecule, for the next singlet states both electrons are localized
on the same (bottom) dot for interdot separation 8 nm. The singlet-triplet
splitting is found to be meV at inter-dot separation =9 nm and as
large as 100 meV for =4 nm, orders of magnitude larger than the few meV
found in the large (50 - 100 nm) electrostatically confined dots
Atomic Effective Pseudopotentials for Semiconductors
We derive an analytic connection between the screened self-consistent
effective potential from density functional theory (DFT) and atomic effective
pseudopotentials (AEPs). The motivation to derive AEPs is to address structures
with thousands to hundred thousand atoms, as given in most nanostructures. The
use of AEPs allows to bypass a self-consistent procedure and to address
eigenstates around a certain region of the spectrum (e.g., around the band
gap). The bulk AEP construction requires two simple DFT calculations of
slightly deformed elongated cells. The ensuing AEPs are given on a fine
reciprocal space grid, including the small reciprocal vector components, are
free of parameters, and involve no fitting procedure. We further show how to
connect the AEPs of different bulk materials, which is necessary to obtain
accurate band offsets. We derive a total of 20 AEPs for III-V, II-VI and group
IV semiconductors and demonstrate their accuracy and transferability by
comparison to DFT calculations of strained bulk structures, quantum wells with
varying thickness, and semiconductor alloys.Comment: 10 pages, 5 figures, submitted to PR
Electric field control and optical signature of entanglement in quantum dot molecules
The degree of entanglement of an electron with a hole in a vertically coupled
self-assembled dot molecule is shown to be tunable by an external electric
field. Using atomistic pseudopotential calculations followed by a configuration
interaction many-body treatment of correlations, we calculate the electronic
states, degree of entanglement and optical absorption. We offer a novel way to
spectroscopically detect the magnitude of electric field needed to maximize the
entanglement.Comment: 4 pages, 6 figure
Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions in InAs/GaAs quantum dots
We present experimental magnetotunneling results and atomistic
pseudopotential calculations of quasiparticle electron and hole wave functions
of self-assembled InAs/GaAs quantum dots. The combination of a predictive
theory along with the experimental results allows us to gain direct insight
into the quantum states. We monitor the effects of (i) correlations, (ii)
atomistic symmetry and (iii) piezoelectricity on the confined carriers and (iv)
observe a peculiar charging sequence of holes that violates the Aufbau
principle.Comment: Submitted to Physical Review B. A version of this paper with figures
can be found at http://www.sst.nrel.gov/nano_pub/mts_preprint.pd
Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: A systematic review
Background: Unresectable intrahepatic cholangiocarcinoma (ICC) portends a poor prognosis despite standard systemic treatments which confer minimal survival benefits and significant adverse effects. This study aimed to assess clinical outcomes, complications and prognostic factors of TAE therapies using chemotherapeutic agents or radiation.
Methods: A literature search and article acquisition was conducted on PubMed (MEDLINE), OVID (MEDLINE) and EBSCOhost (EMBASE). Original articles published after January 2000 on trans-arterial therapies for unresectable ICC were selected using strict eligibility criteria. Radiological response, overall survival, progression-free survival, safety profile, and prognostic factors for overall survival were assessed. Quality appraisal and data tabulation were performed using pre-determined forms. Results were synthesized by narrative review and quantitative analysis.
Results: Twenty articles were included (n=929 patients). Thirty three percent of patients presented with extrahepatic metastases. After treatment, the average rate of complete and partial radiological response was 10% and 22.2%, respectively. Overall median survival time was 12.4 months with a median 30-day mortality and 1-year survival rate of 0.6% and 53%, respectively. Acute treatment toxicity (within 30 days) was reported in 34.9% of patients, of which 64.3% were mild to moderate in severity. The most common clinical toxicities were abdominal pain, nausea and vomiting, and fatigue. Multiplicity, localization and vascularity of the tumor may predict worse overall survival.
Conclusions: Trans-arterial therapies are safe and effective treatment options which should be considered routinely for unresectable ICC. Consistent and standardized methodology and data collection is required to facilitate a meta-analysis. Randomized controlled trials will be valuable in the future
A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean
The development of models of marine ecosystems in the Southern Ocean is becoming increasingly important as a means of understanding and managing impacts such as exploitation and climate change. Collating data from disparate sources, and understanding biases or uncertainties inherent in those data, are important first steps for improving ecosystem models. This review focuses on seals that breed in ice habitats of the Southern Ocean (i.e. crabeater seal, Lobodon carcinophaga; Ross seal, Ommatophoca rossii; leopard seal, Hydrurga leptonyx; and Weddell seal, Leptonychotes weddellii). Data on populations (abundance and trends in abundance), distribution and habitat use (movement, key habitat and environmental features) and foraging (diet) are summarised, and potential biases and uncertainties inherent in those data are identified and discussed. Spatial and temporal gaps in knowledge of the populations, habitats and diet of each species are also identified
Recent advances in exciton based quantum information processing in quantum dot nanostructures
Recent experimental developments in the field of semiconductor quantum dot
spectroscopy will be discussed. First we report about single quantum dot
exciton two-level systems and their coherent properties in terms of single
qubit manipulations. In the second part we report on coherent quantum coupling
in a prototype "two-qubit" system consisting of a vertically stacked pair of
quantum dots. The interaction can be tuned in such quantum dot molecule devices
using an applied voltage as external parameter.Comment: 37 pages, 15 figures, submitted to New Journal of Physics, focus
issue on Solid State Quantum Information, added reference
Collateral and Debt Maturity Choice. A Signaling Model
This paper derives optimal loan policies under asymmetric information where banks offer loan contracts of long and short duration, backed or unbacked with collateral. The main novelty of the paper is that it analyzes a setting in which high quality firms use collateral as a complementary device along with debt maturity to signal their superiority. The least-cost signaling equilibrium depends on the relative costs of the signaling devices, the difference in firm quality and the proportion of good firms in the market. Model simulations suggest a non-monotonic relationship between firm quality and debt maturity, in which high quality firms have both long-term secured debt and short-term secured or non-secured debt.
- …
