58 research outputs found

    Evolving genetic code

    Get PDF
    In 1985, we reported that a bacterium, Mycoplasma capricolum, used a deviant genetic code, namely UGA, a “universal” stop codon, was read as tryptophan. This finding, together with the deviant nuclear genetic codes in not a few organisms and a number of mitochondria, shows that the genetic code is not universal, and is in a state of evolution. To account for the changes in codon meanings, we proposed the codon capture theory stating that all the code changes are non-disruptive without accompanied changes of amino acid sequences of proteins. Supporting evidence for the theory is presented in this review. A possible evolutionary process from the ancient to the present-day genetic code is also discussed

    Attenuated SIRT1 Activity Leads to PER2 Cytoplasmic Localization and Dampens the Amplitude of Bmal1 Promoter-Driven Circadian Oscillation

    Get PDF
    The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock

    Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells.

    Get PDF
    Plasma fibronectin (pFN) is known to regulate cell growth, differentiation or survival of osteoblasts in vitro. It is also speculated to be important for the early phase of osseointegration, however, its actual in vivo behavior is unknown. The objective of this study is to clarify the role of pFN during osseointegration. We developed a titanium ion-plated acrylic implant (Ti-acryl) for thin sectioning without removal of the implant. Either Ti-acryl or pFN-coated Ti-acryl (FN-Ti-acryl) was implanted in the mouse femur. Samples were taken on days 1-7 and on day 14 after the operation, and were decalcified and paraffin embedded. The bone healing process and immunofluorescence localization of pFN and cellular fibronectin (cFN), a marker for fibroblastic cells were examined. Simultaneously, the effect of pFN on chemotaxis, proliferation and differentiation of bone marrow stromal cells (BMSCs) was analyzed in vitro. The in vivo results showed that faster direct bone formation was seen for the FN-Ti-acryl group compared to the Ti-acryl group. The in vitro results showed that pFN significantly promoted BMSCs chemotaxis, however, had no effect on proliferation or differentiation. The results indicate that pFN regulated chemotaxis of osteogenic cells and coating the implant with pFN enhanced earlier osseointegration

    Bioimaging by X-Ray Laser Diffraction at SACLA

    No full text

    Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.

    No full text
    The conserved cytidine residue at position 56 of tRNA contributes to the maintenance of the L-shaped tertiary structure. aTrm56 catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Based on the amino acid sequence, aTrm56 is the most distant member of the SpoU family. Here, we determined the crystal structure of Pyrococcus horikoshii aTrm56 complexed with S-adenosyl-L-methionine at 2.48 A resolution. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot, and a unique C-terminal beta-hairpin. aTrm56 forms a dimer. The S-adenosyl-L-methionine binding and dimerization of aTrm56 were similar to those of the other SpoU members. A structure-based sequence alignment revealed that aTrm56 conserves only motif II, among the four signature motifs. However, an essential Arg16 residue is located at a novel position within motif I. Biochemical assays showed that aTrm56 prefers the L-shaped tRNA to the lambda form as its substrate

    Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii.

    No full text
    International audienceTrm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA*Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family
    corecore