1,570 research outputs found

    Reverse undercompressive shock structures in driven thin film flow

    Full text link
    We show experimental evidence of a new structure involving an undercompressive and reverse undercompressive shock for draining films driven by a surface tension gradient against gravity. The reverse undercompressive shock is unstable to transverse perturbations while the leading undercompressive shock is stable. Depending on the pinch-off film thickness, as controlled by the meniscus, either a trailing rarefaction wave or a compressive shock separates from the reverse undercompressive shock

    Deep Learning for Real Time Crime Forecasting

    Full text link
    Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatio-temporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both space and time. In this work, we adapt the state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et al, AAAI, 2017], to collectively predict crime distribution over the Los Angeles area. Our models are two staged. First, we preprocess the raw crime data. This includes regularization in both space and time to enhance predictable signals. Second, we adapt hierarchical structures of residual convolutional units to train multi-factor crime prediction models. Experiments over a half year period in Los Angeles reveal highly accurate predictive power of our models.Comment: 4 pages, 6 figures, NOLTA, 201

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks

    Development of Knife-Edge Ridges on Ion-Bombarded Surfaces

    Full text link
    We demonstrate in both laboratory and numerical experiments that ion bombardment of a modestly sloped surface can create knife-edge like ridges with extremely high slopes. Small pre-fabricated pits expand under ion bombardment, and the collision of two such pits creates knife-edge ridges. Both laboratory and numerical experiments show that the pit propagation speed and the precise shape of the knife edge ridges are universal, independent of initial conditions, as has been predicted theoretically. These observations suggest a novel method of fabrication in which a surface is pre-patterned so that it dynamically evolves to a desired target pattern made of knife-edge ridges.Comment: 5 pages, 4 figure

    "Marginal pinching" in soap films

    Full text link
    We discuss the behaviour of a thin soap film facing a frame element: the pressure in the Plateau border around the frame is lower than the film pressure, and the film thins out over a certain distance lambda(t), due to the formation of a well-localized pinched region of thickness h(t) and extension w(t). We construct a hydrodynamic theory for this thinning process, assuming a constant surface tension: Marangoni effects are probably important only at late stages, where instabilitites set in. We find lambda(t) ~ t^{1/4}, and for the pinch dimensions h(t) ~ t^{-1/2}$ and w(t) ~ t^{-1/4}. These results may play a useful role for the discussion of later instabilitites leading to a global film thinning and drainage, as first discussed by K. Mysels under the name ``marginal regeneration''.Comment: 7 pages, 2 figure

    Filling the Void: A Low Cost, High-Yield Method to Addressing Incidental Findings in Trauma Patients

    Get PDF
    In this study we: Report the incidence of incidental findings in a suburban trauma center treating primarily blunt and elderly trauma Propose simple solutions to increase the rate of disclosure to patientshttps://jdc.jefferson.edu/patientsafetyposters/1070/thumbnail.jp
    • …
    corecore