4,160 research outputs found

    Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems

    Full text link
    In this paper we present a self-contained macroscopic description of diffusive systems interacting with boundary reservoirs and under the action of external fields. The approach is based on simple postulates which are suggested by a wide class of microscopic stochastic models where they are satisfied. The description however does not refer in any way to an underlying microscopic dynamics: the only input required are transport coefficients as functions of thermodynamic variables, which are experimentally accessible. The basic postulates are local equilibrium which allows a hydrodynamic description of the evolution, the Einstein relation among the transport coefficients, and a variational principle defining the out of equilibrium free energy. Associated to the variational principle there is a Hamilton-Jacobi equation satisfied by the free energy, very useful for concrete calculations. Correlations over a macroscopic scale are, in our scheme, a generic property of nonequilibrium states. Correlation functions of any order can be calculated from the free energy functional which is generically a non local functional of thermodynamic variables. Special attention is given to the notion of equilibrium state from the standpoint of nonequilibrium.Comment: 21 page

    A combinatorial proof of tree decay of semi-invariants

    Full text link
    We consider finite range Gibbs fields and provide a purely combinatorial proof of the exponential tree decay of semi--invariants, supposing that the logarithm of the partition function can be expressed as a sum of suitable local functions of the boundary conditions. This hypothesis holds for completely analytical Gibbs fields; in this context the tree decay of semi--invariants has been proven via analyticity arguments. However the combinatorial proof given here can be applied also to the more complicated case of disordered systems in the so called Griffiths' phase when analyticity arguments fail

    Renormalization Group in the uniqueness region: weak Gibbsianity and convergence

    Full text link
    We analyze the block averaging transformation applied to lattice gas models with short range interaction in the uniqueness region below the critical temperature. We prove weak Gibbsianity of the renormalized measure and convergence of the renormalized potential in a weak sense. Since we are arbitrarily close to the coexistence region we have a diverging characteristic length of the system: the correlation length or the critical length for metastability, or both. Thus, to perturbatively treat the problem we have to use a scale-adapted expansion. Moreover, such a model below the critical temperature resembles a disordered system in presence of Griffiths' singularity. Then the cluster expansion that we use must be graded with its minimal scale length diverging when the coexistence line is approached

    The Pomeron in Elastic and Deep Inelastic Scattering

    Get PDF
    We discuss some properties of the Pomeron in high energy elastic hadron-hadron and deep inelastic lepton-hadron scattering. A number of issues concerning the nature and the origin of the Pomeron are briefly recalled here. The novelty in this paper resides essentially in its presentation; we strive at discussing all these various issues in the following unifying perspective : it is our contention that the Pomeron is one and the same in all reactions. Various examples will be provided illustrating why we do not believe that one should invoke additional tools to describe the data. For pedagogical convenience, we list below the topics to be covered in the following. -- 1. Introduction. How many Pomerons? -- 2. The Pomeron in the SS-matrix theory -- 3. The Pomeron in QCD -- 4. The Pomeron in deep inelastic scattering -- 5. The Pomeron structure -- 6. (Temporary?) ConclusionsComment: 32 pages in TeX; 27 figures (available on request from [email protected]

    Long range correlations and phase transition in non-equilibrium diffusive systems

    Full text link
    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles.In both cases, the two-point correlation functions allow to detect the occurrence of a phase transition as they become singular when the system approaches the transition

    Perturbative analysis of disordered Ising models close to criticality

    Full text link
    We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor ferromagnetic couplings and no external magnetic field. We show that, if the probability of supercritical couplings is small enough, the system admits a convergent cluster expansion with probability one. The associated polymers are defined on a sequence of increasing scales; in particular the convergence of the above expansion implies the infinite differentiability of the free energy but not its analyticity. The basic tools in the proof are a general theory of graded cluster expansions and a stochastic domination of the disorder

    Crossover to the KPZ equation

    Get PDF
    We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry an2−γan^{2-\gamma} (a,γ>0a,\gamma>0) and it occurs at γ=1/2\gamma=1/2. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if γ∈(1/2,1]\gamma\in(1/2,1], while for γ=1/2\gamma=1/2 it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.Comment: Published by Annales Henri Poincare Volume 13, Number 4 (2012), 813-82

    Lagrangian phase transitions in nonequilibrium thermodynamic systems

    Full text link
    In previous papers we have introduced a natural nonequilibrium free energy by considering the functional describing the large fluctuations of stationary nonequilibrium states. While in equilibrium this functional is always convex, in nonequilibrium this is not necessarily the case. We show that in nonequilibrium a new type of singularities can appear that are interpreted as phase transitions. In particular, this phenomenon occurs for the one-dimensional boundary driven weakly asymmetric exclusion process when the drift due to the external field is opposite to the one due to the external reservoirs, and strong enough.Comment: 10 pages, 2 figure

    Evaluation of the stress–strain curve of metallic materials by spherical indentation

    Get PDF
    AbstractA method for deducing the stress–strain uniaxial properties of metallic materials from instrumented spherical indentation is presented along with an experimental verification.An extensive finite element parametric analysis of the spherical indentation was performed in order to generate a database of load vs. depth of penetration curves for classes of materials selected in order to represent the metals commonly employed in structural applications. The stress–strain curves of the materials were represented with three parameters: the Young modulus for the elastic regime, the stress of proportionality limit and the strain-hardening coefficient for the elastic–plastic regime.The indentation curves simulated by the finite element analyses were fitted in order to obtain a continuous function which can produce accurate load vs. depth curves for any combination of the constitutive elastic–plastic parameters. On the basis of this continuous function, an optimization algorithm was then employed to deduce the material elastic–plastic parameters and the related stress–strain curve when the measured load vs. depth curve is available by an instrumented spherical indentation test.The proposed method was verified by comparing the predicted stress–strain curves with those directly measured for several metallic alloys having different mechanical properties.This result confirms the possibility to deduce the complete stress–strain curve of a metal alloy with good accuracy by a properly conducted instrumented spherical indentation test and a suitable interpretation technique of the measured quantities
    • …
    corecore