146 research outputs found

    Strongly coupled 't Hooft model on the lattice

    Get PDF
    A lattice strong coupling calculation of the spectrum and chiral condensate of the 't Hooft model is presented. The agreement with the results of the continuum theory is strikingly good even at the fourth order in the strong coupling expansion.Comment: LATTICE99(Spin Models), talk presented by F. Berruto, 3 pages, LaTex, espcrc2.st

    Lattice Gauge Theories and the Heisenberg Antiferromagnetic Chain

    Full text link
    We study the strongly coupled 2-flavor lattice Schwinger model and the SU(2)-color QCD_2. The strong coupling limit, even with its inherent nonuniversality, makes accurate predictions of the spectrum of the continuum models and provides an intuitive picture of the gauge theory vacuum. The massive excitations of the gauge model are computable in terms of spin-spin correlators of the quantum Heisenberg antiferromagnetic spin-1/2 chain.Comment: Proceedings LATTICE99 (spin models), 3 page

    Low-lying meson spectrum of large NCN_C strongly coupled lattice QCD

    Full text link
    We compute the low energy mass spectrum of lattice QCD in the large NCN_C limit. Expanding around a gauge-invariant ground state, which spontaneously breaks the discrete chiral symmetry, we derive an improved strong-coupling expansion and evaluate, for any value of NCN_C, the masses of the low-lying states in the unflavored meson spectrum. We then take the 't Hooft limit by rescaling g2NC→g2g^2 N_C\to g^2; the 't Hooft limit is smooth and no arbitrary parameters are needed. We find, already at the fourth order of the strong coupling perturbation theory, a very good agreement between the results of our lattice computation and the known continuum values.Comment: 43 pages, 1 figure. Minor corrections. One reference added in section

    The Chiral Condensate of Strongly Coupled QCD in the 't Hooft Limit

    Full text link
    Using the recently proposed generalization to an arbitrary number of colors of the strong coupling approach to lattice gauge theories\cite{Grignani:2003uv}, we compute the chiral condensate of massless QCD in the 't Hooft limit.Comment: 12 pages, revtex

    meV resolution in laser-assisted energy-filtered transmission electron microscopy

    Full text link
    The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (< 100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations relies on tools that combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently, phonons and collective plasmon resonances can be imaged in nanostructures with sub-nm and 10s meV space/energy resolution using state-of-the-art energy-filtered transmission electron microscopy (TEM), but only under static conditions, while fs-resolved measurements are common but lack spatial or energy resolution. Here, we demonstrate a new method of spectrally resolved photon-induced near-field electron microscopy (SRPINEM) that allows us to obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution determined by the laser linewidth (20 meV in this work), and not limited by electron beam and spectrometer energy spreading. This technique can be extended to any optically-accessible low-energy mode, thus pushing TEM to a previously inaccessible spectral domain with an unprecedented combination of space, energy and temporal resolution.Comment: 19 pages, 7 figure

    Biomass supply chain event management

    Get PDF
     D. K. Folinas1, D. D. Bochtis2, C. G. Sørensen2, P. Busato3(1. ATEI Thessaloniki, Department of Logistics, Greece; 2. Department of Biosystems Engineering, Faculty of Agricultural Sciences, Aarhus University, Blichers Alle´ 20, P.O. box 50;   3. DEIAFA Department,Faculty of Agriculture, University of Turin, Via Leonardo da Vinci 44, 10095, Grugliasco, Turin, Italy) Abstract: The biomass supply chain constitutes a system that is highly dynamic and stochastic.  The developed and proposed systems architectures for the management of the supply chains of typical industrial products do not directly apply to the case of the biomass supply chain

    From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields

    Get PDF
    Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexplored timescales, below the attosecond, would enable unprecedented applications in light-assisted electron quantum circuits and diagnostics at extremely small timescales, such as those governing intramolecular electronic motion and nuclear phenomena. We experimentally demonstrate attosecond coherent manipulation of the electron wave function in a transmission electron microscope, and show that it can be pushed down to the zeptosecond regime with existing technology. We make a relativistic pulsed electron beam interact in free space with an appropriately synthesized semi-infinite light field generated by two femtosecond laser pulses reflected at the surface of a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting coherent oscillations of the electron states in energymomentum space are mapped via momentum-resolved ultrafast electron energy-loss spectroscopy. The experimental results are in full agreement with our theoretical framework for light-electron interaction, which predicts access to the zeptosecond timescale by combining semi-infinite X-ray fields with free electrons.Comment: 22 pages, 6 figure
    • …
    corecore