42,937 research outputs found

    Inorganic ion exchange membrane fuel cell quarterly progress report, period ending 10 apr. 1965

    Get PDF
    Inorganic ion exchange membrane for improving mass and heat transfer of fuel cells using palladium and platinum black as catalys

    Sets of Priors Reflecting Prior-Data Conflict and Agreement

    Full text link
    In Bayesian statistics, the choice of prior distribution is often debatable, especially if prior knowledge is limited or data are scarce. In imprecise probability, sets of priors are used to accurately model and reflect prior knowledge. This has the advantage that prior-data conflict sensitivity can be modelled: Ranges of posterior inferences should be larger when prior and data are in conflict. We propose a new method for generating prior sets which, in addition to prior-data conflict sensitivity, allows to reflect strong prior-data agreement by decreased posterior imprecision.Comment: 12 pages, 6 figures, In: Paulo Joao Carvalho et al. (eds.), IPMU 2016: Proceedings of the 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Eindhoven, The Netherland

    Dijet Event Shapes as Diagnostic Tools

    Full text link
    Event shapes have long been used to extract information about hadronic final states and the properties of QCD, such as particle spin and the running coupling. Recently, a family of event shapes, the angularities, has been introduced that depends on a continuous parameter. This additional parameter-dependence further extends the versatility of event shapes. It provides a handle on nonperturbative power corrections, on non-global logarithms, and on the flow of color in the final state.Comment: 18 pages, 3 figure

    Optimisation of patch distribution strategies for AMR applications

    Get PDF
    As core counts increase in the world's most powerful supercomputers, applications are becoming limited not only by computational power, but also by data availability. In the race to exascale, efficient and effective communication policies are key to achieving optimal application performance. Applications using adaptive mesh refinement (AMR) trade off communication for computational load balancing, to enable the focused computation of specific areas of interest. This class of application is particularly susceptible to the communication performance of the underlying architectures, and are inherently difficult to scale efficiently. In this paper we present a study of the effect of patch distribution strategies on the scalability of an AMR code. We demonstrate the significance of patch placement on communication overheads, and by balancing the computation and communication costs of patches, we develop a scheme to optimise performance of a specific, industry-strength, benchmark application

    Thermoluminescence fading studies: Implications for long-duration space measurements in Low Earth Orbit

    Full text link
    Within a 1.5 year comprehensive fading experiment several batches of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescence detectors (TLDs) were studied. The TLDs originated from two manufacturers and were processed by three laboratories using different annealing and readout conditions. The TLDs were irradiated with two radiation modalities (gamma-rays and thermal neutrons) and were stored at two temperatures (-17.4C and +18.5C). The goal of the experiment was to verify the stability of TLDs in the context of their application in long-term measurements in space. The results revealed that the response of all TLDs is stable within 10% for the studied temperature range. No influence of the radiation type was found. These results indicate that for the properly oven-annealed LiF TLDs, fading is not a significant problem, even for measuring periods longer than a year

    Isolated Prompt Photon Production in Hadronic Final States of e+e−e^+e^- Annihilation

    Get PDF
    We provide complete analytic expressions for the isolated prompt photon production cross section in e+e−e^+e^- annihilation reactions through one-loop order in quantum chromodynamics (QCD) perturbation theory. Functional dependences on the isolation cone size δ\delta and isolation energy parameter ϵ\epsilon are derived. The energy dependence as well as the full angular dependence of the cross section on θγ\theta_\gamma are displayed, where θγ\theta_\gamma specifies the direction of the photon with respect to the e+e−e^+e^- collision axis. We point out that conventional perturbative QCD factorization breaks down for isolated photon production in e+e−e^+e^- annihilation reactions in a specific region of phase space. We discuss the implications of this breakdown for the extraction of fragmentation functions from e+e−e^+e^- annihilation data and for computations of prompt photon production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one compressed fil

    Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)

    Get PDF
    We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 ±\pm 0.0001 and 3.7130 ±\pm 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present an SED of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components' radii and temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact error in Figure 15; v3: now in-pres
    • …
    corecore