52 research outputs found

    Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    Get PDF
    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow

    The South Armenian Block: Gondwanan origin and Tethyan evolution in space and time

    Get PDF
    The geodynamic evolution of the South Armenian Block (SAB) within the Tethyan realm during the Palaeozoic to present-day is poorly constrained. Much of the SAB is covered by Cenozoic sediments so that the relationships between the SAB and the neighbouring terranes of Central Iran, the Pontides and Taurides are unclear. Here we present new geochronological, palaeomagnetic, and geochemical constraints to shed light on the Gondwanan and Cimmerian provenance of the SAB, timing of its rifting, and geodynamic evolution since the Permian. We report new 40Ar/39Ar and zircon U-Pb ages and compositional data on magmatic sills and dykes in the Late Devonian sedimentary cover, as well as metamorphic rocks that constitute part of the SAB basement. Zircon age distributions, ranging from ∼3.6 Ga to 100 Ma, firmly establish a Gondwanan origin for the SAB. Trondhjemite intrusions into the basement at ∼263 Ma are consistent with a SW-dipping active continental margin. Mafic intraplate intrusions at ∼246 Ma (OIB) and ∼234 Ma (P-MORB) in the sedimentary cover likely represent the incipient stages of breakup of the NE Gondwanan margin and opening of the Neotethys. Andesitic dykes at ∼117 Ma testify to the melting of subduction-modified lithosphere. In contrast to current interpretations, we show that the SAB should be considered separate from the Taurides, and that the Armenian ophiolite complexes formed chiefly in the Eurasian forearc. Based on the new constraints, we provide a geodynamic reconstruction of the SAB since the Permian, in which it started rifting from Gondwana alongside the Pontides, likely reached the Iranian margin in Early Jurassic times, and was subject to episodes of intraplate (∼189 Ma) and NE-dipping subduction-related (∼117 Ma) magmatism

    A historical perspective on the discovery of statins

    Get PDF
    Cholesterol is essential for the functioning of all human organs, but it is nevertheless the cause of coronary heart disease. Over the course of nearly a century of investigation, scientists have developed several lines of evidence that establish the causal connection between blood cholesterol, atherosclerosis, and coronary heart disease. Building on that knowledge, scientists and the pharmaceutical industry have successfully developed a remarkably effective class of drugs—the statins—that lower cholesterol levels in blood and reduce the frequency of heart attacks

    Determination of Trace Elements in Bauxite Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry on Lithium Borate Glass Beads

    No full text
    Quantification of trace element contents in bauxite by solution ICP-MS and other analytical methods that rely on conventional dissolution techniques can be challenging, because the refractory nature of common host minerals complicates complete digestion. Fusion with lithium borate, frequently used as a sample preparation method for XRF analysis of solid materials, avoids these problems. This manuscript documents that subsequent analysis of the low-dilution glass beads by laser ablation ICP-MS is a fast, accurate and precise method for determining trace element mass fractions in samples of bauxite and similar natural materials. The method was validated by determining thirty trace elements, including thirteen rare earth elements, in international reference materials for bauxite (ANRT BX-N, NIST SRM 69b, NIST SRM 696, NIST SRM 698) and iron formations (CCRMP FeR-2). Trace elements were typically measured to within 20% of reference values with an 'external' precision of < 20% RSD. Measurement results from various deposits in Suriname illustrate the procedure's effectiveness for studies concerning chemical properties and origin of bauxite
    corecore