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Abstract 12 

Post-collisional magmatism reflects the regional subduction history prior to collision but the 13 

link between the two is complex and often poorly understood. The collision of continents along 14 

a convergent plate boundary commonly marks the onset of a variety of transitional 15 

geodynamic processes. Typical responses include delamination of subducting lithosphere, 16 

crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or 17 

the complete termination of convergence. A prominent example is the Western-Central 18 

Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been 19 

accommodated by a variety of spreading and subduction systems that dispersed remnants of 20 

subducted lithosphere into the mantle, creating a compositionally wide spectrum of 21 

magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine 22 

crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which 23 

we attribute to the presence of continental material, introduced initially by Alpine and 24 

subsequently by Apennine subduction. We show that superimposed subduction imprints of a 25 

mantle source can be tapped during a melting episode millions of years later, and are recorded 26 

in a single lava flow. 27 

Keywords: Melt inclusions, Pb isotopes, mantle heterogeneity, Italian magmatism, 28 

Mediterranean geodynamics, Latera volcano 29 

30 
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1. Introduction 31 

Despite its relative rarity, post-collisional potassium-rich magmatism provides 32 

important insight into the composition of the subcontinental lithospheric mantle along the 33 

Alpine-Himalayan belt, and highlights the role of recycled continental-crust (Guo et al., 2006; 34 

Lustrino et al., 2011; Miller et al., 1999; Prelević et al., 2013; Tommasini et al., 2011; Zhao et al., 35 

2009). Extensive studies of Italian mainland volcanics have used Sr-Nd-Pb isotopes to argue for 36 

involvement of recycled crustal material (Conticelli et al., 2002; Lustrino et al., 2011; Peccerillo, 37 

1999), but in view of the complex subduction history of the Mediterranean region, the 38 

provenances are difficult to resolve using bulk-rock samples. Melt inclusions (MIs) provide 39 

direct information about primitive magma compositions in considerably more detail (Jackson 40 

and Hart, 2006; Kobayashi et al., 2004; Maclennan, 2008; Nikogosian and van Bergen, 2010; 41 

Rose-Koga et al., 2012; Saal et al., 2005; Sobolev et al., 2000; Sorbadere et al., 2012). We use 42 

olivine-hosted MIs from Latera, a strategically positioned volcano in Central Italy, to 43 

investigate the subcontinental mantle source beneath the Italian peninsula. We demonstrate 44 

that their Pb isotope compositions and trace-element signatures are diagnostic in tracing input 45 

from both Alpine and Apennine subduction. 46 

1.1. Magmatic and geodynamic setting  47 

Pliocene to present-day magmatism in peninsular Italy has developed in a post-collision 48 

setting associated with plate convergence involving continental Europe, the extending western 49 

Mediterranean realm and Adriatic-Ionian lithosphere (Fig. 1).  50 

The large compositional spectrum of predominantly potassic parental magmas has been 51 

attributed to (1) different subducted crustal components, (2) heterogeneous pre- 52 
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metasomatic mantle or (3) progressive melt-extraction processes (Conticelli et al., 2004; Foley, 53 

1992; Peccerillo, 2005).  54 

Further to this, systematic compositional variation in erupted products with geographic 55 

location could reflect lateral heterogeneity in mantle sources affected by distinct metasomatic 56 

events associated with multiple subduction systems (Peccerillo, 1999). Magmatism in and off 57 

the northern part of peninsular Italy (mostly in the Tuscany-Corsica region) has been linked to 58 

Cretaceous-Oligocene Alpine subduction (Peccerillo, 1999; Peccerillo and Martinotti, 2006) 59 

and is characterized by lamproite (LAM) - shoshonite (SHO) - calc-alkaline (CA) magmatic 60 

associations. In contrast, magma sources in Central-Southern Italy developed under the 61 

influence of the Miocene to Recent subduction of Adriatic-Ionian lithosphere and produced 62 

shoshonite and strongly silica-undersaturated leucite-bearing high-potassium (HKS) and minor 63 

subalkaline rock series (Conticelli et al., 2002; Peccerillo, 1999). 64 

Seismic tomography has identified the presence of fossil and still actively subducting 65 

slabs below Italy, related to the south- to eastward subduction of Tethyan oceanic lithosphere 66 

in the north, and the southwest to westward subduction of Adriatic and Ionian lithosphere, 67 

with continental and oceanic affinities respectively, below the central and southern areas 68 

(Giacomuzzi et al., 2012; Spakman and Wortel, 2004). These two separate subduction 69 

processes are referred to as Alpine and Apennine subduction, respectively (see Fig. 1). The 70 

geodynamic influence on magmatism is further complicated by rollback, tearing, and 71 

detachment of slabs and lithospheric delamination that accompanied subduction of the 72 

Adriatic lithosphere in the Apennine subduction zone (Chiarabba and Chiodini, 2013; Faccenna 73 

et al., 2001; Giacomuzzi et al., 2012; Serri et al., 1993; Wortel and Spakman, 2000).  74 
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Latera stratovolcano represents the latest stage (0.28-0.15 Ma) of K-rich volcanism in 75 

the Vulsini volcanic complex (< 0.7 Ma), the northernmost sector of the Roman Magmatic 76 

Province (Roman MP) where HKS and SHO rock series prevail (Peccerillo, 2005). In this area, 77 

the Roman MP overlaps the neighboring Tuscan Magmatic Province (Tuscan MP) (Fig. 1) 78 

where mantle-derived magmas are represented by LAM-SHO-CA associations (Conticelli et al., 79 

2010). Erupted products of Latera comprise SHO as well as HKS rock types (Conticelli et al., 80 

1991). We focus on samples from various locations across a ca. 12 km long shoshonitic flow 81 

(Selva del Lamone, SdL) and from a representative HKS lava from nearby Monte Starnina 82 

(Conticelli et al., 1991). The SdL samples (4.8-5.8 wt.% MgO) contain olivine phenocrysts 83 

together with clinopyroxene, plagioclase, and rare sanidine. The Monte Starnina sample (4.8 84 

wt.% MgO) contains clinopyroxene leucite and olivine as phenocrysts (see Table B.1, Fig. A.1). 85 

2. Methods 86 

2.1. Analytical techniques 87 

Whole-rock compositions of the studied samples were determined by XRF (major elements) 88 

and ICP-MS (trace elements) at the Earth Science Department of the Free University 89 

(Amsterdam), using a Philips PW1404/10 and Thermo Electron X-series II ICP-MS, respectively. 90 

Each sample was crushed and sieved to separate the olivine phenocrysts. They were 91 

embedded in epoxy holders and polished on one side for electron microprobe analysis (EPMA). 92 

The most forsterite-rich olivine grains with noticeable melt inclusions were selected to 93 

determine compositions and crystallization conditions of the parental melts. Melt inclusion re-94 

homogenization and quenching experiments were performed with a high-T heating/quenching 95 

stage (design of Sobolev et al., 1980) at the Free University (Amsterdam), following the 96 
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experimental procedure described in Nikogosian and van Bergen (2010). Details of melt 97 

inclusions homogenization experiments can be found in Appendix A. After quenching, host-98 

olivine grains were polished until the melt inclusions were exposed at the surface for major, 99 

trace, and volatile element analysis by EPMA, Secondary Ion Mass Spectrometry (SIMS), and 100 

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). 101 

EPMA analyses were carried out using a JEOL JXA8600 Superprobe at Utrecht University, 102 

operated in WDS (wavelength dispersive) mode following the procedure described in De Hoog 103 

et al. (2001). Natural minerals, metals, and synthetic oxides were used as calibration standards. 104 

Daughter mineral phases in un-homogenized melt inclusions exposed at the surface were 105 

identified using semi-qualitative energy dispersive spectrometry (EDS) analysis. 106 

Low-temperature microthermometry on fluid phases was performed on a Linkam TP/91-THMS 107 

600 stage at the Free University (Amsterdam) following a routine as outlined in Nikogosian et 108 

al. (2002). 109 

Concentrations of trace elements in most of the quenched melt inclusions were determined by 110 

SIMS using a CAMECA IMS4f at the Institute of Microelectronics (Yaroslavl′, Russia), following 111 

techniques and procedures reported by Danyushevsky and Sobolev (1996) and Portnyagin et 112 

al. (2007). Polished, gold-coated olivine mounts were initially sputtered with a 70 µm diameter 113 

primary 16O2
- beam for 3 minutes to remove the coating. Data were obtained using a 16O2

- 114 

primary ion beam of 15-20 nA accelerated to 50 kV resulting in a spot size of ca. 10-20 µm. 115 

Each MI was analyzed near its center, with 5 data points taken over a 10–15 µm deep vertical 116 

profile with an integration time of 40 to 60 minutes. A calibration curve for glass standards 117 

ATHO-Ga (Jochum et al., 2006) and NIST SRM 610(Jochum et al., 2011) was used to calculate 118 
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element concentrations based on the ratio of the respective isotopes to 30Si. Glass standards 119 

were analyzed after each 3-6 MI analyses. Data reproducibility is given in Table B.5.  120 

Some of the additional quenched melt inclusions were analyzed for trace element contents by 121 

LA-ICP-MS using a GeoLas 200Q Excimer laser ablation system (193 nm wavelength) coupled 122 

to a Thermo Finnigan Element 2 sector field ICP-MS instrument at Utrecht University following 123 

the techniques of Mason et al. (2008). Data were obtained using a constant fluence of 5-10 J 124 

cm-2 and pulse repetition rate of 10 Hz with 20-60 µm diameter craters. Each MI was ablated 125 

for ca. 25-30s, and background count rates were measured prior to and after the ablation of MI. 126 

Calcium determined by EPMA was used as an internal standard, with NIST 612 as the 127 

calibration standard.  128 

Lead isotope compositions of MI were acquired by SIMS with a large geometry Cameca-1270 129 

ion microprobe at the NORDSIM Facility, Swedish Museum of Natural History, Stockholm 130 

closely following the methods described by Whitehouse et al. (2005). The samples (polished 131 

grain mounts) were gold coated to avoid charging during the sputtering process. Data were 132 

obtained using a 16O2
- primary ion beam of 20 nA accelerated to 22.5 kV, resulting in a spot size 133 

of ca. 20 µm. Following an initial pre-sputter with a rastered beam to remove the gold coating, 134 

the secondary ion beam was automatically centered in the 4000 μm field aperture. An energy 135 

window of 45 eV was used without applying an energy offset. The instrument was operated in 136 

multi-collection mode with simultaneous determination of all four Pb isotopes in low noise ion-137 

counting electron multipliers set on movable trolleys. 204Pb+ was measured in the electron 138 

multiplier (EM) set on the trolley position L2, 206Pb+ in C, 207Pb+ in H1, and 208Pb+ in H2. A mass 139 

resolution of 4860 (M/ΔM) ensured adequate resolution from molecular interferences in the 140 
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melt inclusions and reference glasses. Mass calibration was performed at the beginning of each 141 

analysis based on the 208Pb signal. Each analysis consisted of 100 cycles with a total integration 142 

time of 1000 seconds for each isotope. Using the above setup, instrument sensitivity on 208Pb 143 

was ca. 30 cps/ppm/nA.  144 

The USGS glass BCR-2G was used as the primary standard to correct for variations in detector 145 

efficiency and instrumental mass fractionation. Glasses GSE1-G, BHVO2-G, and BIR1-G were 146 

used as secondary standards to monitor the accuracy of the calibration, based on preferred 147 

values listed by Georem (Table B.6). Results for the secondary standards were within error of 148 

published values for all 204Pb-based ratios. As expected from counting statistics, a strong 149 

correlation between Pb concentrations of MI and analytical uncertainty in Pb isotope ratios 150 

was observed. Lead concentrations in melt inclusions were sufficiently high so that 204Pb-151 

based ratios could be used for distinction of geochemical sources. Our in run precision ranged 152 

from 0.03 to 0.40 (2σ) for 206Pb/204Pb, from 0.03 to 0.35 (2σ) for 207Pb/204Pb and from 0.07 to 153 

0.85 (2σ) for 208Pb/204Pb. A total of 19 melt inclusions were analyzed for Pb isotope 154 

compositions, two of which were discarded based on high analytical uncertainties (>0.5 for 155 

206Pb/204Pb) due to primary beam instability during the analysis of these two particular 156 

inclusions. Lead concentrations, isotopic ratios, and precision data are provided in Table A.3 for 157 

the complete dataset. 158 

 159 

3. Results 160 

The SdL flow contains two different magmatic olivine populations (Group-1 and Group-161 

2) that we distinguish by their morphology, chemistry and compositions of trapped melt and 162 
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spinel inclusions (Tables B.2-B.4, Figs A.1-A.3), as well as rare mantle olivine xenocrysts. 163 

Group-1 olivines are characterized by the highest forsterite (Fo85-Fo91), and by relatively low 164 

CaO (0.20-0.33 wt.%) and high NiO (0.15-0.40 wt.%) contents that tend to increase with 165 

increasing Fo. These euhedral phenocrysts host partially crystallized primary MIs in the 10-80 166 

μm diameter range. Group-2 olivines have overlapping forsterite (Fo80-Fo90), somewhat higher 167 

CaO (0.27-0.35 wt.%), and similar NiO contents relative to Group-1. They host large, fully 168 

crystallized primary MIs (>100 μm in diameter) with large fluid bubbles, whereas smaller-sized 169 

MIs (10-20 μm) are also present.  170 

The chemistry of the MIs corroborates the distinction between the two groups. 171 

Although all contain 7-11 wt.% MgO, have a SHO composition, and an overlapping range in 172 

potassium (1.7-4.8 wt.% K2O), Group-1 MIs have lower SiO2, Al2O3, Na2O, FeO and higher CaO, 173 

TiO2, P2O5 and volatile contents than Group-2 MIs. In addition, the MIs show opposite K2O-174 

CaO relationships (Fig. 2). In both cases, trace element patterns of MIs (Fig. A.4) are overall 175 

similar and typical for subduction-related imprints of the mantle sources below peninsular Italy 176 

(e.g., Peccerillo, 2005). Group-2 melts are relatively enriched in Zr, Hf, and Pb and depleted in 177 

Sr, features that they share with Tuscan lamproites (Fig. A.4; cf., Conticelli et al., 1991; 178 

Conticelli et al., 2010; Peccerillo, 2005). Compositions of SdL Group-1 melt inclusions  are 179 

typical for the shoshonite series (SiO2=46.9-50.4, MgO=7.1-9.5, K2O=1.7-3.5 wt.%). Decreasing 180 

K2O is accompanied by a strong increase in CaO (9.3-14.6 wt.%, Fig. 2) and modest decreases 181 

in Na2O (3-1.8 wt.%) and Al2O3 (17.6-15.1 wt.%), while there are no systematic relations with 182 

MgO, SiO2, TiO2 (Fig.A.5) or volatile elements (Cl, S, F). Trace element patterns, normalized to 183 

depleted MORB mantle (Fig. A.4), display depletion in HFSE relative to LILE and LREE, and 184 
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enrichments in LREE relative to HREE. These characteristics are typical for all potassic rocks of 185 

Central-Southern Italy and are taken to reflect subduction-related enrichments of their mantle 186 

sources (Peccerillo, 2005). 187 

Compositions of SdL Group-2 MIs are also predominantly shoshonitic (SiO2 =48.3-55.4, 188 

MgO=7.7-13, K2O=2.3-4.7 wt.%) but cover a wider K2O range and have significantly lower CaO 189 

contents (1.9-6.9 wt.%) than those of Group-1. The Group-2 MIs have also higher SiO2, Al2O3, 190 

Na2O, FeO, and lower TiO2, P2O5 and volatile contents (Fig2, Fig.A.5). Unlike Group-1, 191 

decreasing in K2O is associated with decreasing CaO (Fig.2), as well as decreasing Na2O (3.4-192 

1.8 wt.%) and modest increases in MgO and Al2O3 (14-22 wt. %), while there are no obvious 193 

relationships with SiO2, TiO2, P2O5 or volatile elements. Trace elements patterns are marked 194 

by strong enrichments in Rb, Th, U, Pb, LREE and HFSE, higher La/Yb and Th/Nb, and lower 195 

Sm/Yb ratios in comparison to Group-1 MI (Fig. A.4). They also display a Sr depletion and Zr, Hf 196 

enrichments. The Group-2 MIs share these features with Tuscan lamproitic lavas (cf., Conticelli 197 

et al., 1991; Peccerillo, 2005; Conticelli et al., 2010), but they differ in terms of their overall 198 

lower incompatible trace-element contents and stronger Pb enrichment. Melt inclusions with 199 

mixed Group-1 and Group-2 compositions were occasionally observed in the rims of Group-2 200 

olivines but are rare in Group-1 olivines. 201 

The compositions of spinel inclusions also confirm the grouping of their olivine hosts.  202 

In Group-1 they have slightly lower Cr-numbers [Cr#=Cr/(Cr+Al)] than in Group-2 (0.36-0.46 203 

and 0.45-0.55, respectively; see Fig. A.3), as well as lower Cr2O3, TiO2 and Fe2+/Fe3+, and higher 204 

Mg#, Al2O3 and MnO. The major and trace element compositions of the HKS MIs closely 205 

resemble those of mafic HKS lavas from East Vulsini (Fig. 2, Fig. A.6) testifying that HKS lavas 206 
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of Latera and adjacent centers in the northernmost sector of the Roman MP are co-genetic 207 

(cf., Conticelli et al., 1991). 208 

Of the 19 MIs analyzed for Pb isotopes, 17 had Pb concentrations allowing isotope ratio 209 

measurements, including 204Pb, with minimal error (Fig. A.7). Melt inclusions show extreme Pb 210 

isotopic diversity (Fig. 3) compared to the narrow range for the host lavas. Group-1 MIs display 211 

a remarkable range in isotope ratios between highly unradiogenic and highly radiogenic values 212 

for 207Pb/204Pb (14.57-16.04) and 208Pb/204Pb (36.16-40.44) at 206Pb/204Pb values of 17.91-19.29. 213 

The Pb isotope ratios of Group-2 MIs are less variable and distinctive with higher 207Pb/204Pb 214 

and lower 206Pb/204Pb relative to the Group-1 trend. The combination of low 206Pb/204Pb (18.28-215 

18.30) and 208Pb/204Pb (38.02-38.79), and moderately high 207Pb/204Pb (15.56-15.72) in Group-2 216 

MIs has not been observed previously in any of the Italian potassic lavas. Together with the two 217 

extremes in the Group-1 trend, Group-2 forms three end-member components that make up 218 

the bulk-lava composition in Pb isotope space. The Pb isotope compositions of MIs from the 219 

HKS lava also display considerable variation (206Pb/204Pb=18.51-19.16; 207Pb/204Pb=15.46-15.80; 220 

208Pb/204Pb=38.58-39.54), but cover a narrower span. They tend to fall in the Group-1 trend and 221 

are close to those of the Vulsini HKS lavas. 222 

 223 

4. Discussion 224 

The populations of Fo-rich olivines and their MIs with a large variation in K2O are difficult to 225 

reconcile with simple crystal fractionation (Fig. A.7) and point to mingling between partly 226 

crystallized (near-)primary magmas indicating that the SdL lava is a product of different 227 

parental melts (ca. 80% Group-1 and 20% Group-2, estimated from mass balance based on 228 
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trace element concentrations) (Fig. 2, Fig. A.5), derived from two distinctive and 229 

heterogeneous mantle sources. Further association with the Monte Starnina lava, a typical 230 

example of Roman HKS magmatism in Vulsini (Conticelli et al., 2004), underscores the 231 

exceptional compositional diversity of the subcontinental lithospheric mantle beneath Latera, 232 

and typifies its complexity on a regional scale.  233 

4.1. Provenances of Subduction-Related Contaminants of the Mantle Source 234 

Mantle sources of the Roman MP have been affected by input of marl-rich sediments 235 

through subduction of the continental sector of the Adriatic-Ionian domain in Tertiary times 236 

(e.g., Serri et al., 1993). Tuscan MP sources, by contrast, have been influenced by other upper 237 

crustal materials associated with the earlier Alpine collision (Peccerillo, 1999; Peccerillo and 238 

Martinotti, 2006), and possibly by northward drifted, Gondwana-derived continental slivers 239 

piled up by even older collisional events (Tommasini et al., 2011). Pb isotopes measured in bulk 240 

mafic lavas from Tuscan MP as well as the northernmost Roman MP confirm this source 241 

contamination by upper continental crust (Conticelli et al., 2010; Peccerillo, 2005), but they 242 

show insufficient contrast to discriminate between possible provenances of input materials, 243 

particularly in the region of overlap between these provinces. The same limitation applies to 244 

the SdL lava having Pb isotope ratios close to those reported for the Roman HKS lavas (Fig. 3c). 245 

Our Pb isotope data in MIs from the SdL lava reveal two distinctive trends (Fig. 3), not 246 

visible in the bulk rock data. The Group-1 trend extends towards not previously seen extreme 247 

207Pb/204Pb and 208Pb/204Pb values. One end points towards a radiogenic end-member that 248 

could have been introduced through source contamination with upper continental crust. We 249 

explain the unradiogenic end-member of the Group-1 melt inclusions by involvement of 250 
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ancient lower continental crust as a mantle contaminant. Its comparatively high 206Pb/204Pb 251 

ratio relative to old lower crust (Kramers and Tolstikhin, 1997) implies that this signature must 252 

have been created in multiple stages. A plausible scenario is that this crustal contaminant 253 

derived from a source in which the Pb isotopic evolution had been retarded relative to single-254 

stage model mantle reservoirs. Such an exotic composition requires an extensive amount of 255 

time for Pb ingrowth implying a time of separation in the early Archean, after which an 256 

increased U/Pb ratio through intracrustal differentiation ultimately produced the higher 257 

206Pb/204Pb signature. The present-day Pb isotope composition of this Group-I endmember is 258 

exotic for modern mantle-derived igneous rocks, but it overlaps with Late Archean granitoids 259 

from West Greenland (Fig. 3a) that represent re-melting of a lower crustal mafic source or 260 

gneissic precursor (Moorbath et al., 1981; Næraa et al., 2014). We therefore surmise that 261 

material with an analogous history was introduced in the source of Latera volcano. This would 262 

be consistent with the inference that dismembered blocks of an Archean microcontinent in the 263 

central-western Mediterranean realm have been involved in collisions with passive margins 264 

and the development of subduction-related volcanic arcs during the Tertiary convergence of 265 

Africa and Europe (González-Jiménez et al., 2013). The associated mantle source 266 

contamination may have occurred through delamination of subducted continental lithosphere 267 

or subduction erosion of the overriding plate (cf., Kay and Kay, 1993; Lustrino et al., 2000; 268 

Lustrino, 2005). Contamination of mantle sources by ancient lower continental crust with 269 

multistage isotopic evolution has not been previously seen in the post-collisional magmatism 270 

of peninsular Italy but has been inferred from volcanics in Sardinia (Lustrino et al., 2007). 271 
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In terms of Pb isotopes, MIs of the Monte Starnina HKS lava are virtually 272 

indistinguishable from Group-1 MIs. The isotopic variability, whilst less than that in Group 1, 273 

remains considerable in comparison to bulk data, and overlaps the field of Roman MP HKS 274 

lavas (Fig. 3c). Since there is a broad consensus that Roman MP HKS sources were affected by 275 

subducted components from Adriatic lithosphere (Peccerillo, 2005), we infer that upper 276 

continental metasomatic imprints in the mantle below Latera were predominantly derived 277 

from this input. We suggest that the lower continental crust input seen in the Group-1 MIs was 278 

introduced by delamination of Adriatic lithosphere as observed in recent seismic tomographic 279 

studies (e.g., Giacomuzzi et al., 2012). A similar case where Pb isotopic signatures of magma 280 

sources were determined by different portions of a subducted continental margin has been 281 

inferred for the arc-continent collision sector in the Sunda-Banda arc (Elburg et al., 2004). 282 

Group-2 MIs (Fig. 3c) are distinctive and point to the presence of a metasomatic 283 

component in the Latera mantle source with a separate origin. Ratios for trace elements of 284 

comparable incompatibility confirm the compositional dissimilarity of the post-metasomatic 285 

mantle source (Fig. 2d). The Pb-isotope compositions (unradiogenic 206Pb, moderately 286 

radiogenic 207Pb and 208Pb) are similar to lower continental crust found in the Variscan and 287 

older basement of Sardinia and Calabria. They are also close to the composition of Permian 288 

sandstones in the Southern and Eastern Alps, representing erosion products of the Variscan 289 

orogeny. These similarities strongly suggest that the Group-2 mantle component has an 290 

isotopic affinity to ancient lithologies with a paleogeographic position that allowed their 291 

involvement in the early-Tertiary Alpine subduction as: (1) erosion products of exhumed 292 

basement on top of Ligurian-Provençal oceanic lithosphere (Malavieille et al., 1998), (2) 293 
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subducted continental lithosphere (Handy et al., 2010) or (3) via subduction erosion of the 294 

overriding continental crust (Peccerillo and Martinotti, 2006). The near-vertical trend in Group-295 

2 (Fig. 3c) might indicate mixing between this component and the unradiogenic end-member 296 

of Group-1 in Latera’s mantle source.  297 

An “Alpine” origin has also been proposed for the Tuscan MP lamproites where melts 298 

were derived from mantle sources with a crustal metasomatic imprint obtained during the 299 

southeastwards Alpine subduction of Tethyan lithosphere under northern Italy (Peccerillo and 300 

Martinotti, 2006). This hypothesis fits with the inference that western Mediterranean 301 

lamproites inherited their isotopic variations largely from the provenance and age of 302 

continent-derived magma source components that were recycled into the mantle by the 303 

Alpine subduction, with Hercynian Europe acting as a passive margin (Prelević et al., 2008). In 304 

keeping with this, the unradiogenic 206Pb signature detected at Latera in Group-2 and its 305 

correspondence to the fields for Sardinian/Calabrian basement and Alpine sandstones suggest 306 

that the earliest introduced source component was subducted erosion products of Variscan or 307 

older lithologies. We therefore infer that, relative to the Group-1 MI trend, minor shifts 308 

towards lower 206Pb/204Pb values in lavas from the northern Roman MP and the Tuscan MP 309 

(Fig. 3c) reflect relict components in sub-Apennine mantle sources that were subducted during 310 

the Alpine event, in addition to the prevailing components supplied later by the Apennine 311 

subduction. Our findings reveal that bulk-lava data should be regarded as mixtures of 312 

isotopically contrasting components, and that Pb isotope signatures of MIs can depict the 313 

provenance of metasomatic components in the mantle below Central Italy in greater detail. 314 

4.2. Geodynamic Framework 315 
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To further explore the connection between post-collisional magmatism and 316 

geodynamics we combine our provenance results with independent geophysical evidence 317 

concerning the mantle structure and geodynamic evolution of the region. Figure 1b shows that 318 

the Latera site is located just above a tear in the subducted slab as inferred from seismic 319 

tomography using P-wave delay times (Spakman and Wortel, 2004). Northwest of the tear, the 320 

Northern Apennines slab appears to be continuous, whereas to the southeast, the 321 

tomographic images indicate detachment of the subducted slab (cf., Wortel and Spakman, 322 

2000). 323 

Latera’s peculiar location with respect to this underlying mantle structure implies that 324 

magma source components and melt generation should be considered in a true 3D context. 325 

Lateral contributions are to be expected from both sides of the tear, corresponding with the 326 

Northern and Central Apennines plate boundary segments, respectively. Moreover, the 327 

position close to approximately overlapping Adriatic and fossil Alpine lithosphere slabs (Fig. 328 

1b) corroborates the inferred magma derivation from sources affected by metasomatic 329 

contributions from both, either superimposed in the same mantle domain or stratigraphically 330 

separated. Our data provide no evidence for an asthenospheric contribution from below the 331 

Adriatic slab (cf., Rosenbaum et al., 2008). 332 

The melting trigger at Latera was probably the same as that responsible for 333 

magmatism in the entire Roman MP. The more easterly advance of the Northern Apennines 334 

front relative to that of the Central-Southern Apennines has been suggested to indicate 335 

differential retreat of the corresponding slab segments in Late-Pliocene-Quaternary times 336 

(Scrocca, 2006). In this context we propose that a sudden and massive advection of heat, 337 
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associated with the upwelling of hot asthenospheric material in response (Faccenna et al., 338 

2010; Levin et al., 2002) to the segmentation, breaking off and sinking of the central(-339 

southern) Apennines slab (see Fig. 1b), was the magma generating process in the 340 

heterogeneous mantle column that produced Latera’s SHO and HKS flows. Cooling of the 341 

asthenospheric material after upwelling and exhaustion of the metasomatized domains with 342 

relatively low melting temperature accounted for the short-lived nature of the Roman Province 343 

magmatism, including that of Latera volcano.  344 

5. Conclusions  345 

Multiple associations of olivine phenocrysts and inclusions of spinel and primitive melt 346 

within lavas of Latera volcano demonstrate a strong vertical heterogeneity in the mantle below 347 

the region of overlap between the Roman and Tuscan Magmatic Provinces (Central Italy). Co-348 

existence of shoshonitic and lamproite-like assemblages in a single lava flow, and proximity to 349 

coeval silica-undersaturated ultrapotassic products point to simultaneous extraction of melts 350 

from mantle domains with different subduction-related metasomatic signatures. 351 

Extremely variable Pb-isotope compositions of melt inclusions reveal multiple origins 352 

for metasomatic agents that remain unnoticed in data from bulk lava samples. We distinguish 353 

end-members that agree with subducted continental components with an Alpine inheritance 354 

and with derivation from Adriatic upper as well as ancient lower continental crust. Hence, in 355 

line with independent geodynamic evidence, our data from Latera volcano expose 356 

superimposed imprints from the fossil Alpine and the Apennines subduction systems in the 357 

subcontinental mantle of Central Italy. We propose that melting was caused by a thermal pulse 358 

associated with upwelling of hot asthenospheric material, triggered by opening of a slab 359 
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window after segmentation of the Apennines slab and detachment and sinking of the central 360 

Apennines slab segment. 361 
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Figure Captions 536 

Figure 1. a: Location of Latera volcano and other volcanic centers of central-southern Italy. 537 

Map redrawn after Peccerillo (2005). RMP: Roman Magmatic Province, TMP: Tuscan Magmatic 538 

Province, ERMP: Ernici-Roccamonfina Magmatic Province, CMP: Campanian Magmatic 539 

province. Orange curve marks Alpine subduction and blue curve marks Apennine subduction, 540 

including Calabrian subduction in the southern part. b: Schematic representation of 541 

tomographic model for mantle structure with subducted slabs beneath Italy and Tyrrhenian 542 

Sea, after Spakman and Wortel (2004), and approximate position of the mantle column below 543 

Latera volcano. 544 

Figure 2. Variation diagrams for lavas and melt inclusions (MIs) of Selva del Lamone and Mt. 545 

Starnina of a: K2O vs. CaO, b: MgO vs. CaO, c: MgO vs. Pb, d: Th/Ba vs. Pb/Nd normalized to 546 

depleted MORB mantle (DMM). Symbols refer to different groups of MIs in the Selva del 547 

Lamone (SdL) and Monte Starnina lavas. Fields for shoshonite (SHO) and lamproite (LAM) 548 

volcanic rocks from Latera and Tuscany, respectively, and for silica-undersaturated leucite-549 

bearing high-potassic series rocks (HKS) from Vulsini are based on data from Conticelli et al. 550 

(1991) and Lustrino et al. (2011). Note that the measured compositions of Group-2 MIs were 551 

not corrected for possible post-entrapment re-equilibration so that original MgO 552 

concentrations might have been lower than shown in the plots. Arrows in b and c indicate 553 

direction of melt evolution predicted by crystal fractionation of olivine and/or clinopyroxene. 554 

Hence, crystal fractionation cannot have produced the difference between the MI groups from 555 

SdL, whereas the bulk lava composition can be explained as a slightly evolved mixture of the 556 

two. The trace element ratios in d represent pairs with comparable incompatibility and are 557 
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shown to illustrate that Group-2 melts were derived from a compositionally distinct mantle 558 

source. 559 

Figure 3. Pb isotope data for melt inclusions from the SdL and Monte Starnina lavas. a: 560 

207Pb/204Pb vs. 206Pb/204Pb comparing compositions of MIs with data for Late Archean granitoids 561 

from West Greenland (orange stars) that were derived from a crustal source with (at least 562 

partly) an Eoarchean age (Moorbath et al., 1981; Næraa et al., 2014); note that the 563 

unradiogenic endmember of the Group-1 MIs overlaps with the radiogenic end of the granitoid 564 

array. b: 207Pb/204Pb vs. 206Pb/204Pb for MIs from the SdL and Monte Starnina lavas. c: Close up 565 

of b. together with fields for bulk lavas from the northern Roman Magmatic Province HKS, 566 

Latera SHO, and the Tuscan Magmatic Province (Lustrino et al., 2011) and for basement rocks 567 

in the region. The Calabrian basement is represented by granitoids (Rottura et al., 1991), the 568 

Sardinian basement by K-Feldspars from pre-Variscan sandstones and granites (Caron et al., 569 

1997) and sulfides (Stos‐Gale et al., 1995), and the Alpine sandstone by K-feldspars and 570 

galenites from the Permian Grödener sandstones, East Alps (Koppel and Schroll, 1985). The 571 

isotopic closeness of the Group-2 MIs to Sardinian and Calabrian basement rocks and the 572 

Permian sandstone suggests that these lithologies or their erosion products contaminated the 573 

mantle source below Latera via the Alpine subduction system. Conversely, the signatures of 574 

the Group-1 and Mt. Starnina MIs point to a superimposed imprint from the Apennine 575 

subduction. d: 208Pb/204Pb vs. 206Pb/204Pb for MIs from the SdL and Monte Starnina lavas. e: 576 

208Pb/206Pb vs. 207Pb/206Pb for MIs from the SdL and Monte Starnina lavas; Magmatic provinces: 577 

TMP=Tuscan, RMP=Roman, ERMP=Ernici-Roccamonfina, CMP=Campanian (Lustrino et al., 578 

2011). Symbols as in Fig.2. Error bars, where larger than the symbol size, represent 2-sigma 579 
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uncertainties based on the standard error of the mean. The diagonal error bars in the isotope 580 

plots are due to the highly correlated errors of 204Pb-based ratios. Dashed line in each panel is 581 

the Northern Hemisphere Reference Line. UCC=upper continental crust, LCC=lower 582 

continental crust. 583 
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