31,057 research outputs found

    Multicanonical Recursions

    Get PDF
    The problem of calculating multicanonical parameters recursively is discussed. I describe in detail a computational implementation which has worked reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded Z-compressed .tar file created by uufiles), figure file corrected

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Biased Metropolis-Heat-Bath Algorithm for Fundamental-Adjoint SU(2) Lattice Gauge Theory

    Full text link
    For SU(2) lattice gauge theory with the fundamental-adjoint action an efficient heat-bath algorithm is not known so that one had to rely on Metropolis simulations supplemented by overrelaxation. Implementing a novel biased Metropolis-heat-bath algorithm for this model, we find improvement factors in the range 1.45 to 2.06 over conventionally optimized Metropolis simulations. If one optimizes further with respect to additional overrelaxation sweeps, the improvement factors are found in the range 1.3 to 1.8.Comment: 4 pages, 2 figures; minor changes and one reference added; accepted for publication in PR

    Are Simple Real Pole Solutions Physical?

    Get PDF
    We consider exact solutions generated by the inverse scattering technique, also known as the soliton transformation. In particular, we study the class of simple real pole solutions. For quite some time, those solutions have been considered interesting as models of cosmological shock waves. A coordinate singularity on the wave fronts was removed by a transformation which induces a null fluid with negative energy density on the wave front. This null fluid is usually seen as another coordinate artifact, since there seems to be a general belief that that this kind of solution can be seen as the real pole limit of the smooth solution generated with a pair of complex conjugate poles in the transformation. We perform this limit explicitly, and find that the belief is unfounded: two coalescing complex conjugate poles cannot yield a solution with one real pole. Instead, the two complex conjugate poles go to a different limit, what we call a ``pole on a pole''. The limiting procedure is not unique; it is sensitive to how quickly some parameters approach zero. We also show that there exists no improved coordinate transformation which would remove the negative energy density. We conclude that negative energy is an intrinsic part of this class of solutions.Comment: 13 pages, 3 figure

    Isospectrality and heat content

    Full text link
    We present examples of isospectral operators that do not have the same heat content. Several of these examples are planar polygons that are isospectral for the Laplace operator with Dirichlet boundary conditions. These include examples with infinitely many components. Other planar examples have mixed Dirichlet and Neumann boundary conditions. We also consider Schr\"{o}dinger operators acting in L2[0,1]L^2[0,1] with Dirichlet boundary conditions, and show that an abundance of isospectral deformations do not preserve the heat content.Comment: 18 page

    The strength of countable saturation

    Get PDF
    We determine the proof-theoretic strength of the principle of countable saturation in the context of the systems for nonstandard arithmetic introduced in our earlier work.Comment: Corrected typos in Lemma 3.4 and the final paragraph of the conclusio

    Density of states and Fisher's zeros in compact U(1) pure gauge theory

    Full text link
    We present high-accuracy calculations of the density of states using multicanonical methods for lattice gauge theory with a compact gauge group U(1) on 4^4, 6^4 and 8^4 lattices. We show that the results are consistent with weak and strong coupling expansions. We present methods based on Chebyshev interpolations and Cauchy theorem to find the (Fisher's) zeros of the partition function in the complex beta=1/g^2 plane. The results are consistent with reweighting methods whenever the latter are accurate. We discuss the volume dependence of the imaginary part of the Fisher's zeros, the width and depth of the plaquette distribution at the value of beta where the two peaks have equal height. We discuss strategies to discriminate between first and second order transitions and explore them with data at larger volume but lower statistics. Higher statistics and even larger lattices are necessary to draw strong conclusions regarding the order of the transition.Comment: 14 pages, 16 figure

    Defect-induced spin-glass magnetism in incommensurate spin-gap magnets

    Full text link
    We study magnetic order induced by non-magnetic impurities in quantum paramagnets with incommensurate host spin correlations. In contrast to the well-studied commensurate case where the defect-induced magnetism is spatially disordered but non-frustrated, the present problem combines strong disorder with frustration and, consequently, leads to spin-glass order. We discuss the crossover from strong randomness in the dilute limit to more conventional glass behavior at larger doping, and numerically characterize the robust short-range order inherent to the spin-glass phase. We relate our findings to magnetic order in both BiCu2PO6 and YBa2Cu3O6.6 induced by Zn substitution.Comment: 6 pages, 5 figs, (v2) real-space RG results added; discussion extended, (v3) final version as publishe

    Entropy-based analysis of the number partitioning problem

    Full text link
    In this paper we apply the multicanonical method of statistical physics on the number-partitioning problem (NPP). This problem is a basic NP-hard problem from computer science, and can be formulated as a spin-glass problem. We compute the spectral degeneracy, which gives us information about the number of solutions for a given cost EE and cardinality mm. We also study an extension of this problem for QQ partitions. We show that a fundamental difference on the spectral degeneracy of the generalized (Q>2Q>2) NPP exists, which could explain why it is so difficult to find good solutions for this case. The information obtained with the multicanonical method can be very useful on the construction of new algorithms.Comment: 6 pages, 4 figure

    An efficient, multiple range random walk algorithm to calculate the density of states

    Full text link
    We present a new Monte Carlo algorithm that produces results of high accuracy with reduced simulational effort. Independent random walks are performed (concurrently or serially) in different, restricted ranges of energy, and the resultant density of states is modified continuously to produce locally flat histograms. This method permits us to directly access the free energy and entropy, is independent of temperature, and is efficient for the study of both 1st order and 2nd order phase transitions. It should also be useful for the study of complex systems with a rough energy landscape.Comment: 4 pages including 4 ps fig
    • …
    corecore