31,057 research outputs found
Multicanonical Recursions
The problem of calculating multicanonical parameters recursively is
discussed. I describe in detail a computational implementation which has worked
reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded
Z-compressed .tar file created by uufiles), figure file corrected
Exchange Monte Carlo Method and Application to Spin Glass Simulations
We propose an efficient Monte Carlo algorithm for simulating a
``hardly-relaxing" system, in which many replicas with different temperatures
are simultaneously simulated and a virtual process exchanging configurations of
these replica is introduced. This exchange process is expected to let the
system at low temperatures escape from a local minimum. By using this algorithm
the three-dimensional Ising spin glass model is studied. The ergodicity
time in this method is found much smaller than that of the multi-canonical
method. In particular the time correlation function almost follows an
exponential decay whose relaxation time is comparable to the ergodicity time at
low temperatures. It suggests that the system relaxes very rapidly through the
exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe
Biased Metropolis-Heat-Bath Algorithm for Fundamental-Adjoint SU(2) Lattice Gauge Theory
For SU(2) lattice gauge theory with the fundamental-adjoint action an
efficient heat-bath algorithm is not known so that one had to rely on
Metropolis simulations supplemented by overrelaxation. Implementing a novel
biased Metropolis-heat-bath algorithm for this model, we find improvement
factors in the range 1.45 to 2.06 over conventionally optimized Metropolis
simulations. If one optimizes further with respect to additional overrelaxation
sweeps, the improvement factors are found in the range 1.3 to 1.8.Comment: 4 pages, 2 figures; minor changes and one reference added; accepted
for publication in PR
Are Simple Real Pole Solutions Physical?
We consider exact solutions generated by the inverse scattering technique,
also known as the soliton transformation. In particular, we study the class of
simple real pole solutions. For quite some time, those solutions have been
considered interesting as models of cosmological shock waves. A coordinate
singularity on the wave fronts was removed by a transformation which induces a
null fluid with negative energy density on the wave front. This null fluid is
usually seen as another coordinate artifact, since there seems to be a general
belief that that this kind of solution can be seen as the real pole limit of
the smooth solution generated with a pair of complex conjugate poles in the
transformation. We perform this limit explicitly, and find that the belief is
unfounded: two coalescing complex conjugate poles cannot yield a solution with
one real pole. Instead, the two complex conjugate poles go to a different
limit, what we call a ``pole on a pole''. The limiting procedure is not unique;
it is sensitive to how quickly some parameters approach zero. We also show that
there exists no improved coordinate transformation which would remove the
negative energy density. We conclude that negative energy is an intrinsic part
of this class of solutions.Comment: 13 pages, 3 figure
Isospectrality and heat content
We present examples of isospectral operators that do not have the same heat
content. Several of these examples are planar polygons that are isospectral for
the Laplace operator with Dirichlet boundary conditions. These include examples
with infinitely many components. Other planar examples have mixed Dirichlet and
Neumann boundary conditions. We also consider Schr\"{o}dinger operators acting
in with Dirichlet boundary conditions, and show that an abundance of
isospectral deformations do not preserve the heat content.Comment: 18 page
The strength of countable saturation
We determine the proof-theoretic strength of the principle of countable
saturation in the context of the systems for nonstandard arithmetic introduced
in our earlier work.Comment: Corrected typos in Lemma 3.4 and the final paragraph of the
conclusio
Density of states and Fisher's zeros in compact U(1) pure gauge theory
We present high-accuracy calculations of the density of states using
multicanonical methods for lattice gauge theory with a compact gauge group U(1)
on 4^4, 6^4 and 8^4 lattices. We show that the results are consistent with weak
and strong coupling expansions. We present methods based on Chebyshev
interpolations and Cauchy theorem to find the (Fisher's) zeros of the partition
function in the complex beta=1/g^2 plane. The results are consistent with
reweighting methods whenever the latter are accurate. We discuss the volume
dependence of the imaginary part of the Fisher's zeros, the width and depth of
the plaquette distribution at the value of beta where the two peaks have equal
height. We discuss strategies to discriminate between first and second order
transitions and explore them with data at larger volume but lower statistics.
Higher statistics and even larger lattices are necessary to draw strong
conclusions regarding the order of the transition.Comment: 14 pages, 16 figure
Defect-induced spin-glass magnetism in incommensurate spin-gap magnets
We study magnetic order induced by non-magnetic impurities in quantum
paramagnets with incommensurate host spin correlations. In contrast to the
well-studied commensurate case where the defect-induced magnetism is spatially
disordered but non-frustrated, the present problem combines strong disorder
with frustration and, consequently, leads to spin-glass order. We discuss the
crossover from strong randomness in the dilute limit to more conventional glass
behavior at larger doping, and numerically characterize the robust short-range
order inherent to the spin-glass phase. We relate our findings to magnetic
order in both BiCu2PO6 and YBa2Cu3O6.6 induced by Zn substitution.Comment: 6 pages, 5 figs, (v2) real-space RG results added; discussion
extended, (v3) final version as publishe
Entropy-based analysis of the number partitioning problem
In this paper we apply the multicanonical method of statistical physics on
the number-partitioning problem (NPP). This problem is a basic NP-hard problem
from computer science, and can be formulated as a spin-glass problem. We
compute the spectral degeneracy, which gives us information about the number of
solutions for a given cost and cardinality . We also study an extension
of this problem for partitions. We show that a fundamental difference on
the spectral degeneracy of the generalized () NPP exists, which could
explain why it is so difficult to find good solutions for this case. The
information obtained with the multicanonical method can be very useful on the
construction of new algorithms.Comment: 6 pages, 4 figure
An efficient, multiple range random walk algorithm to calculate the density of states
We present a new Monte Carlo algorithm that produces results of high accuracy
with reduced simulational effort. Independent random walks are performed
(concurrently or serially) in different, restricted ranges of energy, and the
resultant density of states is modified continuously to produce locally flat
histograms. This method permits us to directly access the free energy and
entropy, is independent of temperature, and is efficient for the study of both
1st order and 2nd order phase transitions. It should also be useful for the
study of complex systems with a rough energy landscape.Comment: 4 pages including 4 ps fig
- …