17 research outputs found

    Structural and molecular basis of cross-seeding barriers in amyloids

    Get PDF
    Neurodegenerative disorders are frequently associated with beta-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical beta-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents

    Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy

    No full text
    Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13C/15N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly

    J Biomol NMR

    No full text
    Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process

    3D structure determination of amyloid fibrils using solid-state NMR spectroscopy

    Get PDF
    The amyloid fold is structurally characterized by a typical cross-beta architecture, which is under debate to represent an energy-favourable folding state that many globular or natively unfolded proteins can adopt. Being initially solely associated with amyloid fibrils observed in the propagation of several neurodegenerative disorders, the discovery of non-pathological (or "functional") amyloids in many native biological processes has recently further intensified the general interest invested in those cross-beta supramolecular assemblies. The insoluble and non-crystalline nature of amyloid fibrils and their usually inhomogeneous appearance on the mesoscopic level pose a challenge to biophysical techniques aiming at an atomic-level structural characterization. Solid-state NMR spectroscopy (SSNMR) has granted breakthroughs in structural investigations on amyloid fibrils ranging from the assessment of the impact of polymorphism in disease development to the 3D atomic structure determination of amyloid fibrils. First landmark studies towards the characterization of atomic structures and interactions involving functional amyloids have provided new impulses in the understanding of the role of the amyloid fold in native biological functions. Over the last decade many strategies have been developed in protein isotope labelling, NMR resonance assignment, distance restraint determination and 3D structure calculation of amyloid fibrils based on SSNMR approaches. We will here discuss the emerging concepts and state-of-the-art methods related to the assessment of amyloid structures and interactions involving amyloid entities by SSNMR.Nanostructures biologiques et synthétiques étudiées par Résonance Magnétique Nucléaire du SolideStructures d'Assemblages Supramoléculaires par RMN du Solide : le Pseudopilus du Système de Sécrétion de Type II et le Tube de Queue du Bactériophag

    J Biomol NMR

    No full text
    We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C-13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 g using a MAS frequency of 70kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Halpha resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances

    Front. Mol. Biosci.

    No full text
    Nanodomains are dynamic membrane subcompartments, enriched in specific lipid, and protein components that act as functional platforms to manage an abundance of cellular processes. The remorin protein of plants is a well-established nanodomain marker and widely serves as a paradigm to study nanodomain clustering. Located at the inner leaflet of the plasma membrane, remorins perform essential functions during signaling. Using deuteriumand phosphorus solid-state NMR, we inquire on themolecular determinants of the lipid-protein and protein-protein interactions driving nanodomain clustering. By monitoring thermotropism properties, lipid acyl chain order and membrane thickness, we report the effects of phosphoinositides and sterols on the interaction of various remorin peptides and protein constructs with the membrane. We probed several critical residues involved in this interaction and the involvement of the coiled-coil homo-oligomerisation domain into the formation of remorin nanodomains. We trace the essential role of the pH in nanodomain clustering based on anionic lipids such as phosphoinositides. Our results reveal a complex interplay between specific remorin residues and domains, the environmental pH and their resulting effects on the lipid dynamics for phosphoinositide-enriched membranes.Facteurs cellulaires recrutés par les potyvirus pour leur transport intercellulaire : de nouvelles sources de résistance des plantes

    The Bacterial Amyloid-Like Hfq Promotes In Vitro DNA Alignment

    No full text
    The Hfq protein is reported to be involved in environmental adaptation and virulence of several bacteria. In Gram-negative bacteria, Hfq mediates the interaction between regulatory noncoding RNAs and their target mRNAs. Besides these RNA-related functions, Hfq is also associated with DNA and is a part of the bacterial chromatin. Its precise role in DNA structuration is, however, unclear and whether Hfq plays a direct role in DNA-related processes such as replication or recombination is controversial. In previous works, we showed that Escherichia coli Hfq, or more precisely its amyloid-like C-terminal region (CTR), induces DNA compaction into a condensed form. In this paper, we evidence a new property for Hfq; precisely we show that its CTR influences double helix structure and base tilting, resulting in a strong local alignment of nucleoprotein Hfq:DNA fibers. The significance of this alignment is discussed in terms of chromatin structuration and possible functional consequences on evolutionary processes and adaptation to environment

    A polymorphic helix of a Salmonella needle protein relays signals defining distinct steps in type III secretion

    No full text
    Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion

    Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis

    No full text
    Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a beta-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis

    Molecular mechanisms behind remorin nanodomain formation by solidstate NMR

    No full text
    Protein and lipid components in biological membranes act as a dynamic network of subtle molecular inter-actions segregating the membrane into particular regions called nanodomains. Nanodomains act as func-tional platforms enriched in specific lipids (such as sterols and phosphoinositides) and proteins to performtheir diverse activities. Remorins (REMs) are plant proteins and well-established nanodomain markers and,as such, they can be considered as paradigm to provide a mechanistic description of membrane organisationinto functional nanodomains. Using solid-state nuclear magnetic resonance (ssNMR) and building upon ourinitial knowledge ofStREM1.3 and its C-terminal membrane anchor, we reveal the delicate balance betweenhydrophobic and electrostatic effects leading up to the protein’s characteristic affinity for negatively chargedphospholipids. In a divide-and-conquer approach, we describe the impact ofStREM1.3’s C-terminal anchor, itsoligomerisation domain and intrinsically disordered region on membrane structure and dynamics. Further-more, we tackle the structural features ofStREM1.3 when associated to nanodomain-mimicking membranes.We reveal thatStREM1.3 drives nanodomain organisation by concerted lipid-protein and protein-protein inter-action
    corecore