2,159 research outputs found
Quantum Phase Transition from a Spin-liquid State to a Spin-glass State in the Quasi-1D Spin-1 System Sr1-xCaxNi2V2O8
We report a quantum phase transition from a spin-liquid state to a spin-glass
state in the quasi-one dimensional (1D) spin-1 system Sr1-xCaxNi2V2O8, induced
by a small amount of Ca-substitution at Sr site. The ground state of the parent
compound (x = 0) is found to be a spin-liquid type with a finite energy gap of
26.6 K between singlet ground state and triplet excited state. Both
dc-magnetization and ac-susceptibility studies on the highest Ca-substituted
compound (x = 0.05) indicate a spin-glass type magnetic ground state. With
increasing Ca-concentration, the spin-glass ordering temperature increases from
4.5 K (for the x = 0.015 compound) to 6.25 K (for the x = 0.05 compound). The
observed results are discussed in the light of the earlier experimental reports
and the theoretical predictions for a quasi-1D spin-1 system.Comment: 26 pages, 8 figures, 3 table
Enhanced Raman and photoluminescence response in monolayer MoS due to laser healing of defects
Bound quasiparticles, negatively charged trions and neutral excitons, are
associated with the direct optical transitions at the K-points of the Brillouin
zone for monolayer MoS. The change in the carrier concentration,
surrounding dielectric constant and defect concentration can modulate the
photoluminescence and Raman spectra. Here we show that exposing the monolayer
MoS in air to a modest laser intensity for a brief period of time enhances
simultaneously the photoluminescence (PL) intensity associated with both trions
and excitons, together with 3 to 5 times increase of the Raman intensity
of first and second order modes. The simultaneous increase of PL from trions
and excitons cannot be understood based only on known-scenario of depletion of
electron concentration in MoS by adsorption of O and HO molecules.
This is explained by laser induced healing of defect states resulting in
reduction of non-radiative Auger processes. This laser healing is corroborated
by an observed increase of intensity of both the first order and second order
2LA(M) Raman modes by a factor of 3 to 5. The A mode hardens by
1.4 cm whereas the E mode softens by 1 cm.
The second order 2LA(M) Raman mode at 440 cm shows an increase in
wavenumber by 8 cm with laser exposure. These changes are a
combined effect of change in electron concentrations and oxygen-induced lattice
displacements.Comment: 15 pages, 5 figures, Journal of Raman Spectroscopy, 201
Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrVO ( = Co, Mn)
Magnetic correlations of two iso-structural quasi-one-dimensional (1D)
antiferromagnetic spin-chain compounds SrVO ( = Co, Mn) have
been investigated by magnetization and powder neutron diffraction. Two
different collinear antiferromagnetic (AFM) structures, characterized by the
propagation vectors, = (0 0 1) and = (0 0 0), have been found below
5.2 K and 42.2 K for the Co- and Mn-compounds, respectively. For
the Mn-compound, AFM chains (along the axis) order ferromagnetically within
the plane, whereas, for the Co-compound, AFM chains order
ferro-/antiferromagnetically along the direction. The critical exponent
study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg
universality classes, respectively. For both compounds, short-range spin-spin
correlations are present over a wide temperature range above . The reduced
ordered moments at base temperature (1.5 K) indicate the presence of quantum
fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table
Recommended from our members
Which quantile is the most informative? Maximum likelihood, maximum entropy and quantile regression
This paper studies the connections among quantile regression, the asymmetric Laplace distribution, maximum likelihood and maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we propose an estimator based on the joint estimating equations. This approach delivers estimates for the slope parameters together with the associated “most probable” quantile. Similarly, this method can be seen as a penalized quantile regression estimator, where the penalty is given by deviations from the median regression. We derive the asymptotic properties of this estimator by showing consistency and asymptotic normality under certain regularity conditions. Finally, we illustrate the use of the estimator with a simple application to the U.S. wage data to evaluate the effect of training on wages
- …