228 research outputs found

    MUTU PELAYANAN DAN TINGKAT KEPUASAN PASIEN DI KLINIK TERPADU POLITEKNIK KESEHATAN SURAKARTA

    Get PDF
    Latar belakang : Keberhasilan penyelenggaraan pelayanan ditentukan oleh tingkat kepuasan penerima pelayanan. Kepuasan penerima pelayanan dicapai apabila penerima pelayanan memperoleh pelayanan sesuai dengan yang dibutuhkan dan diharapkan. Selain pelanggan juga mengharapkan adanya pelayanan yang bermutu.Tujuan Penelitian : secara umum penelitian ini bertujuan untuk mengetahui hubungan mutu pelayanan dengan kepuasan pasien di klinik terpadu Politeknik Kesehatan Surakarta. Secara khusus penelitian ini bertujuan untuk : memperoleh gambaran mengenai mutu dan pelaksanaan pelayanan di klinik terpadu Politeknik Kesehatan Surakarta, memperoleh gambaran pelayanan fasilitas dan pelayanan petugas di klinik terpadu Politeknik Kesehatan SurakartaMetode : jenis penelitian adalah analitik obsevasional. Dengan pendekatan croos sectional. Subyek penelitian ini adalah seluruh pasien yang berkunjung di klinik terpadu Politeknik Kesehatan Surakarta sebanyak 91 responden yang diambil secara purposive sampling. Untuk mengetahui hubungan antara mutu pelayanan dengan tingkat kepuasan pasien di klinik terpadu Poltekkes Surakarta menggunakan uji korelasi Spearmen RankHasil Penelitian : Responden yang menyatakan mutu pelayanan sangat baik 60,44% cukup baik 38,46% dan kurang baik 1,10%. Responden yang menyatakan sangat puas terhadap pelayanan petugas 39,56%, cukup puas 58,24%, kurang puas 2,20%. Responden yang sangat puas terhadap pelayanan fasilitas 41,76%, cukup puas 57,14% dan kurang puas 1,10%. Hasil analisis korelasi rank spearman diperoleh nilai rs 0,064 dengan nilai signifikansi 0,544 > 0,05 sehingga dinyatakan tidak ada hubungan antara mutu dan pelayanan dengan kepuasan pasien terhadap pelayanan petugas di Klinik Terpadu Politeknik Kesehatan Surakarta. Hasil analisis korelasi rank spearman diperoleh nilai rs sebesar 0,304 dengan nilai signifikansi 0,033 < 0,05 sehingga dinyatakan ada hubungan antara mutu pelayanan dengan kepuasan terhadap fasilitas di Klinik Terpadu Politeknik Kesehatan Surakarta.Kata Kunci : Mutu pelayanan, Kepuasa

    Characterization of Gastrin-Releasing Peptide and Its Receptor Aberrantly Expressed by Human Colon Cancer Cell Lines

    Get PDF
    ABSTRACT Gastrin-releasing peptide (GRP) is a mitogen and morphogen important in the development of human colon cancers. Although epithelial cells lining the colon do not normally express GRP or its receptor (GRP-R), most human tumors express GRP-R mRNA. Yet functional protein has only been detected in 24 to 40% of colon cancers. To elucidate the reason for the difference between the expression of GRP/GRP-R mRNA and protein, we studied nine human colon cancer cell lines. Quantitative polymerase chain reaction revealed that all colon cancer cell lines expressed similar amounts of mRNA for both GRP as well as GRP-R. Yet binding studies using 125 I-Tyr 4 -bombesin detected functional receptors on only five of the nine cell lines studied. Conformational fragment-length polymorphism analysis indicated that although mRNA for the ligand GRP was never mutated, mRNA for the GRP-R was always mutated. Sequencing revealed that the message for GRP-R contained between two and seven separate mutations at the nucleotide level. This resulted in 14 separate coding mutations, 2 of which were observed in more than one cell line. Each mutation was individually recreated by site-directed mutagenesis and studied in transiently transfected Chinese hamster ovary-K1 cells. Alteration of Pro 145 into a tyrosine, of Val 317 into a glutamic acid, and insertion of a 32-nucleotide segment resulting in a frameshift distal to Asp 137 all resulted in GRP receptors incapable of binding ligand. Thus, these data indicate that human colon cancers commonly express GRP and GRP-R mRNA but that receptor mutations account for the failure of functional protein to be generated

    Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Get PDF
    BACKGROUND: The relationship between cell shape, proliferation, and extracellular matrix (ECM) production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D) culture. RESULTS: Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1) Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2) Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3) Cells on Matrigelā„¢-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. CONCLUSIONS: The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigelā„¢ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior

    Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [194], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [150]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3 GPR4 GPR6 GPR12 GPR15 GPR17 GPR20 GPR22 GPR26 GPR31 GPR34 GPR35 GPR37 GPR39 GPR50 GPR63 GRP65 GPR68 GPR75 GPR84 GPR87 GPR88 GPR132 GPR149 GPR161 GPR183 LGR4 LGR5 LGR6 MAS1 MRGPRD MRGPRX1 MRGPRX2 P2RY10 TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans in GtoPdb v.2022.3

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans in GtoPdb v.2023.1

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans in GtoPdb v.2021.3

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [191], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [148]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Jejunal Diverticular Perforation due to Enterolith

    Get PDF
    Jejunal diverticulosis is a rare entity with variable clinical and anatomical presentations. Although there is no consensus on the management of asymptomatic jejunal diverticular disease, some complications are potentially life-threatening and require early surgical treatment. Small bowel perforation secondary to jejunal diverticulitis by enteroliths is rare. The aim of this study was to report a case of small intestinal perforation caused by a large jejunal enterolith. An 86-year-old woman was admitted with signs of diffuse peritonitis. After initial fluid recovery the patient underwent emergency laparotomy. The surgery showed that she had small bowel diverticular disease, mainly localized in the proximal jejunum. The peritonitis was due to intestinal perforation caused by an enterolith 12 cm in length, localized inside one of these diverticula. The intestinal segment containing the perforated diverticulum with the enterolith was removed and an end-to-end anastomosis was done to reconstruct the intestinal transit. The patient recovered well and was discharged from hospital on the 5th postoperative day. There were no signs of abdominal pain 1 year after the surgical procedure. Although jejunal diverticular disease with its complications, such as formation of enteroliths, is difficult to suspect in patients with peritonitis, it should be considered as a possible source of abdominal infection in the elderly patient when more common diagnoses have been excluded

    Simple model to explain effects of plasma protein binding and tissue binding on calculated volumes of distribution, apparent elimination rate constants and clearances

    Full text link
    A simple pharmacokinetic model, incorporating linear plasma protein binding, linear tissue binding, and first order elimination of free (unbound) drug, was studied. If Cl p is the plasma clearance, V f is the ā€œtrueā€ volume of distribution of free drug, Ī² is the apparent elimination rate constant, Ļƒ is the fraction of the drug which is free in plasma, f is the fraction of the drug which is free in the entire body, k f is the intrinsic elimination rate constant for free drug, and A TB o is the initial amount of drug which is bound to tissues, then the model indicates that the following relationships hold: (1) Cl p = V f Ļƒ k f ; (2) Ī² = f k f ; and V dext = (Ļƒ/f) V f . Only Ļƒ, and not f, can be measured experimentally . Dividing Cl p by Ļƒ provides an estimate of the intrinsic clearance of free drug, V f k f . A plot of V dext versus Ļƒ has an intercept equal to V f , and the ratio of the slope/intercept is an estimate of A TB o /A f o , where A f o is the initial amount of free drug (equal to V f times initial concentration of free drug in plasma). Thus, an estimate of A TB o may be obtained. Dividing the intrinsic clearance by V f provides an estimate of k f . Thus, theoretically, estimates of V f , k f , A TB o and f may be obtained. The variables are not separated when Ī² is plotted versus Ļƒ, and curvature of such plots is expected; no useful information is obtained from such plots.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46634/1/228_2004_Article_BF00563079.pd
    • ā€¦
    corecore