46,782 research outputs found
Entangled Mixed States and Local Purification
Linden, Massar and Popescu have recently given an optimization argument to
show that a single two-qubit Werner state, or any other mixture of the
maximally entangled Bell states, cannot be purified by local operations and
classical communications. We generalise their result and give a simple
explanation. In particular, we show that no purification scheme using local
operations and classical communications can produce a pure singlet from any
mixed state of two spin-1/2 particles. More generally, no such scheme can
produce a maximally entangled state of any pair of finite-dimensional systems
from a generic mixed state. We also show that the Werner states belong to a
large class of states whose fidelity cannot be increased by such a scheme.Comment: 3 pages, Latex with Revtex. Small clarifications and reference adde
Entanglement of pure states for a single copy
An optimal local conversion strategy between any two pure states of a
bipartite system is presented. It is optimal in that the probability of success
is the largest achievable if the parties which share the system, and which can
communicate classically, are only allowed to act locally on it. The study of
optimal local conversions sheds some light on the entanglement of a single copy
of a pure state. We propose a quantification of such an entanglement by means
of a finite minimal set of new measures from which the optimal probability of
conversion follows.Comment: Revtex, 4 pages, no figures. Minor changes. Appendix remove
Duality of privacy amplification against quantum adversaries and data compression with quantum side information
We show that the tasks of privacy amplification against quantum adversaries
and data compression with quantum side information are dual in the sense that
the ability to perform one implies the ability to perform the other. These are
two of the most important primitives in classical information theory, and are
shown to be connected by complementarity and the uncertainty principle in the
quantum setting. Applications include a new uncertainty principle formulated in
terms of smooth min- and max-entropies, as well as new conditions for
approximate quantum error correction.Comment: v2: Includes a derivation of an entropic uncertainty principle for
smooth min- and max-entropies. Discussion of the
Holevo-Schumacher-Westmoreland theorem remove
The adaptation of cognitive behavioural therapy for adult Maori clients with depression: A pilot study
A semistructured cognitive behavioural therapy (CBT) programme for depression was adapted for use with Maori adult clients with depression. Adaptations were developed in consultation with an advisory group consisting of Maori clinical psychologists and kaumatua with experience working in mental health services. The programme was piloted with 2 participants who were clients of a Maori mental health service. The programme builds on a more traditional CBT treatment programme by integrating concepts such as whakatauki, whanaungatanga, whanau involvement, and whakapapa into the therapeutic context. Despite limitations the results demonstrate considerable promise. Depressive symptoms increased substantially in both cases and both clients reflected positively on the adaptations incorporated into therapy
Mixed State Entanglement and Quantum Error Correction
Entanglement purification protocols (EPP) and quantum error-correcting codes
(QECC) provide two ways of protecting quantum states from interaction with the
environment. In an EPP, perfectly entangled pure states are extracted, with
some yield D, from a mixed state M shared by two parties; with a QECC, an arbi-
trary quantum state can be transmitted at some rate Q through a
noisy channel without degradation. We prove that an EPP involving one-
way classical communication and acting on mixed state (obtained
by sharing halves of EPR pairs through a channel ) yields a QECC on
with rate , and vice versa. We compare the amount of entanglement
E(M) required to prepare a mixed state M by local actions with the amounts
and that can be locally distilled from it by EPPs using one-
and two-way classical communication respectively, and give an exact expression
for when is Bell-diagonal. While EPPs require classical communica-
tion, QECCs do not, and we prove Q is not increased by adding one-way classical
communication. However, both D and Q can be increased by adding two-way com-
munication. We show that certain noisy quantum channels, for example a 50%
depolarizing channel, can be used for reliable transmission of quantum states
if two-way communication is available, but cannot be used if only one-way com-
munication is available. We exhibit a family of codes based on universal hash-
ing able toachieve an asymptotic (or ) of 1-S for simple noise models,
where S is the error entropy. We also obtain a specific, simple 5-bit single-
error-correcting quantum block code. We prove that {\em iff} a QECC results in
high fidelity for the case of no error the QECC can be recast into a form where
the encoder is the matrix inverse of the decoder.Comment: Resubmission with various corrections and expansions. See also
http://vesta.physics.ucla.edu/~smolin/ for related papers and information. 82
pages latex including 19 postscript figures included using psfig macro
Simple Proof of Security of the BB84 Quantum Key Distribution Protocol
We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for
quantum key distribution. We first give a key distribution protocol based on
entanglement purification, which can be proven secure using methods from Lo and
Chau's proof of security for a similar protocol. We then show that the security
of this protocol implies the security of BB84. The entanglement-purification
based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these
codes are used to remove the use of quantum computation from the Lo-Chau
protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo
Some recent applications of XTRAN3S
A time marching finite difference code, XTRAN3S that solves the three dimensional transonic small perturbation equation for flow over isolated wings was developed. During initial applications of the program, problems were encountered in the prediction of unsteady forces. The use of a revised grid and force calculation scheme improved those predictions. Comparisons are made between predicted and experimental pressure data for a rectangular supercritical wing. Comparisons of steady and unsteady data at M sub infinity = 0.700 show good agreement between calculated and experimental values. A comparison of steady data at M sub infinity 0.825 shows poor agreement between calculations and experiment. Program difficulties were encountered with swept and tapered configurations
Twelve-spin "Schrodinger cat"
Pseudopure "cat" state, a superposition of quantum states with all spins up
and all spins down, is experimentally demonstrated for a system of twelve
dipolar-coupled nuclear spins of fully 13C-labeled benzene molecule oriented in
a liquid-crystalline matrix.Comment: Submitted to Applied Physics Letter
- âŠ