698 research outputs found

    Potential and mass-matrix in gauged N=4 supergravity

    Get PDF
    We discuss the potential and mass-matrix of gauged N=4 matter coupled supergravity for the case of six matter multiplets, extending previous work by considering the dependence on all scalars. We consider all semi-simple gauge groups and analyse the potential and its first and second derivatives in the origin of the scalar manifold. Although we find in a number of cases an extremum with a positive cosmological constant, these are not stable under fluctuations of all scalar fields.Comment: 28 pages, LaTe

    Radiative Corrections to One-Photon Decays of Hydrogenic Ions

    Full text link
    Radiative corrections to the decay rate of n=2 states of hydrogenic ions are calculated. The transitions considered are the M1 decay of the 2s state to the ground state and the E1(M2) decays of the 2p1/22p_{1/2} and 2p3/22p_{3/2} states to the ground state. The radiative corrections start in order α(Zα)2\alpha (Z \alpha)^2, but the method used sums all orders of ZαZ\alpha. The leading α(Zα)2\alpha (Z\alpha)^2 correction for the E1 decays is calculated and compared with the exact result. The extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure

    Lepton Flavor Violating Processes and Muon g-2 in Minimal Supersymmetric SO(10) Model

    Full text link
    In the recently proposed minimal supersymmetric SO(10) model, the neutrino Dirac Yukawa coupling matrix, together with all the other fermion mass matrices, is completely determined once free parameters in the model are appropriately fixed so as to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino Dirac Yukawa couplings, we calculate the lepton flavor violating (LFV) processes and the muon g-2 assuming the minimal supergravity scenario. The resultant rates of the LFV processes are found to be large enough to well exceed the proposed future experimental bound, while the magnitude of the muon g-2 can be within the recent result by Brookhaven E821 experiment. Furthermore, we find that there exists a parameter region which can simultaneously realize the neutralino cold dark matter abundance consistent with the recent WMAP data.Comment: 18 pages, 10 figures. The version to be published in Phys. Rev.

    Smooth hybrid inflation in supergravity with a running spectral index and early star formation

    Full text link
    It is shown that in a smooth hybrid inflation model in supergravity adiabatic fluctuations with a running spectral index with \ns >1 on a large scale and \ns <1 on a smaller scale can be naturally generated, as favored by the first-year data of WMAP. It is due to the balance between the nonrenormalizable term in the superpotential and the supergravity effect. However, since smooth hybrid inflation does not last long enough to reproduce the central value of observation, we invoke new inflation after the first inflation. Its initial condition is set dynamically during smooth hybrid inflation and the spectrum of fluctuations generated in this regime can have an appropriate shape to realize early star formation as found by WMAP. Hence two new features of WMAP observations are theoretically explained in a unified manner.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    Separability in Asymmetric Phase-Covariant Cloning

    Full text link
    Here, asymmetric phase-covariant quantum cloning machines are defined and trade-off between qualities of their outputs and its impact on entanglement properties of the outputs are studies. In addition, optimal families among these cloners are introduced and also their entanglement properties are investigated. An explicit proof of optimality is presented for the case of qubits, which is based on the no-signaling condition. Our optimality proof can also be used to derive an upper bound on trade-off relations for a more general class of optimal cloners which clone states on a specific orbit of the Bloch sphere. It is shown that the optimal cloners of the equatorial states, as in the case of symmetric phase-covariant cloning, give rise to two separable clones, and in this sense these states are unique. For these cloners it is shown that total output is of GHZ-type

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Non-minimally Coupled Tachyonic Inflation in Warped String Background

    Full text link
    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large TT along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured.Comment: minor typos corrected and references adde

    String Imprints from a Pre-inflationary Era

    Full text link
    We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi type I and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to survive an inflationary epoch, and hence be a possible fossil remnant (still visible today) of an anisotropic phase in the very early universe.Comment: 5 pages, 3 figure

    Accelerated Cosmological Models in First-Order Non-Linear Gravity

    Full text link
    The evidence of the acceleration of universe at present time has lead to investigate modified theories of gravity and alternative theories of gravity, which are able to explain acceleration from a theoretical viewpoint without the need of introducing dark energy. In this paper we study alternative gravitational theories defined by Lagrangians which depend on general functions of the Ricci scalar invariant in minimal interaction with matter, in view of their possible cosmological applications. Structural equations for the spacetimes described by such theories are solved and the corresponding field equations are investigated in the Palatini formalism, which prevents instability problems. Particular examples of these theories are also shown to provide, under suitable hypotheses, a coherent theoretical explanation of earlier results concerning the present acceleration of the universe and cosmological inflation. We suggest moreover a new possible Lagrangian, depending on the inverse of sinh(R), which gives an explanation to the present acceleration of the universe.Comment: 23 pages, Revtex4 fil
    corecore