687 research outputs found

    Upper Limits on Electric and Weak Dipole Moments of W-Boson

    Full text link
    The total cross-sections of the reaction e+e- --> W+W-, as measured at LEP-II at centre-of-mass energies between 183 and 207 GeV are used to derive the upper limits on the parameters of CP-violating (P-odd and C-even) triple gauge-boson couplings WW\gamma and WWZ. The 95% CL limits |\widetilde{\kappa}_Z|<0.13 and |\widetilde{\lambda}_Z|<0.31 are obtained assuming local SU(2)_L x U(1)_Y gauge invariance. Our results are comparable with the previous ones obtained through the analysis of the W decay products. We also discuss the upper limits on the electric dipole moment (EDM) of the W-boson, which follow from the precision measurements of the electron and neutron EDM.Comment: 9 pages, 4 figure

    Scaling property and peculiar velocity of global monopoles

    Full text link
    We investigate the scaling property of global monopoles in the expanding universe. By directly solving the equations of motion for scalar fields, we follow the time development of the number density of global monopoles in the radiation dominated (RD) universe and the matter dominated (MD) universe. It is confirmed that the global monopole network relaxes into the scaling regime and the number per hubble volume is a constant irrespective of the cosmic time. The number density n(t)n(t) of global monopoles is given by n(t)(0.43±0.07)/t3n(t) \simeq (0.43\pm0.07) / t^{3} during the RD era and n(t)(0.25±0.05)/t3n(t) \simeq (0.25\pm0.05) / t^{3} during the MD era. We also examine the peculiar velocity vv of global monopoles. For this purpose, we establish a method to measure the peculiar velocity by use of only the local quantities of the scalar fields. It is found that v(1.0±0.3)v \sim (1.0 \pm 0.3) during the RD era and v(0.8±0.3)v \sim (0.8 \pm 0.3) during the MD era. By use of it, a more accurate analytic estimate for the number density of global monopoles is obtained.Comment: 17 pages, 8 figures, to appear in Phys. Rev.

    Muon g-2, rare decays P \to l^+l^- and transition form factors P \to \gamma\gamma^*

    Full text link
    Measuring the muon anomalous magnetic moment g-2 and the rare decays of light pseudoscalar mesons into lepton pair P \to l+l- serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. We comment on the (in)consistency of these data with perturbative QCD expectation.Comment: 4 pages, 3 figures, invited talk at the 3rd Joint International Hadron Structure'09 Conference, Tatranska Strba (Slovak Republic), Aug. 30--Sept. 3, 2009; v2 - some typos are correcte

    Information and entropy in quantum Brownian motion: Thermodynamic entropy versus von Neumann entropy

    Full text link
    We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.Comment: 8 pages, 7 figure

    Entanglement can increase asymptotic rates of zero-error classical communication over classical channels

    Full text link
    It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel. Interestingly, our examples are based on the exceptional simple root systems E7 and E8.Comment: 14 pages, 2 figur

    Cosmological Evolution of Global Monopoles

    Full text link
    We investigate the cosmological evolution of global monopoles in the radiation dominated (RD) and matter dominated (MD) universes by numerically solving field equations of scalar fields. It is shown that the global monopole network relaxes into the scaling regime, unlike the gauge monopole network. The number density of global monopoles is given by n(t)(0.43±0.07)/t3n(t) \simeq (0.43\pm0.07) / t^{3} during the RD era and n(t)(0.25±0.05)/t3n(t) \simeq (0.25\pm0.05) / t^{3} during the MD era. Thus, we have confirmed that density fluctuations produced by global monopoles become scale invariant and are given by δρ7.2(5.0)σ2/t2\delta \rho \sim 7.2(5.0) \sigma^{2} / t^{2} during the RD (MD) era, where σ\sigma is the breaking scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R

    Entanglement of photons

    Full text link
    It is argued that the title of this paper represents a misconception. Contrary to widespread beliefs it is electromagnetic field modes that are ``systems'' and can be entangled, not photons. The amount of entanglement in a given state is shown to depend on redefinitions of the modes; we calculate the minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe

    The nearly Newtonian regime in Non-Linear Theories of Gravity

    Full text link
    The present paper reconsiders the Newtonian limit of models of modified gravity including higher order terms in the scalar curvature in the gravitational action. This was studied using the Palatini variational principle in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and [Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)] with contradicting results. Here a different approach is used, and problems in the previous attempts are pointed out. It is shown that models with negative powers of the scalar curvature, like the ones used to explain the present accelerated expansion, as well as their generalization which include positive powers, can give the correct Newtonian limit, as long as the coefficients of these powers are reasonably small. Some consequences of the performed analysis seem to raise doubts for the way the Newtonian limit was derived in the purely metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217 (2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf 72}, 083505 (2005)] in which the problem of the Newtonian limit of both the purely metric and the Palatini formalism is discussed, using the equivalent Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio

    An accelerated closed universe

    Full text link
    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, ΩM\Omega_M and ΩΛ\Omega_{\Lambda}, and of the associated density parameter ΩQ\Omega_Q related to the quintessence scalar field QQ.Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in Gen. Rel. Gra

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.
    corecore