1,431 research outputs found

    Passive decoy state quantum key distribution: Closing the gap to perfect sources

    Full text link
    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present-day, non-ideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical post-processing. This allows to improve the effective signal statistics and achievable distance.Comment: 4 pages, 3 figures. State preparation correcte

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure

    Modeling the Daily Variations of the Coronal X-ray Spectral Irradiance with Two Temperatures and Two Emission Measures

    Full text link
    The Miniature X-ray Solar Spectrometer (MinXSS-1) CubeSat observed solar X-rays between 0.5 and 10 keV. A two-temperature, two-emission measure model is fit to each daily averaged spectrum. These daily average temperatures and emission measures are plotted against the corresponding daily solar 10.7 cm radio flux (F10.7) value and a linear correlation is found between each that we call the Schwab Woods Mason (SWM) model. The linear trends show that one can estimate the solar spectrum between 0.5 keV and 10 keV based on the F10.7 measurement alone. The cooler temperature component of this model represents the quiescent sun contribution to the spectra and is essentially independent of solar activity, meaning the daily average quiescent sun is accurately described by a single temperature (1.70 MK) regardless of solar intensity and only the emission measure corresponding to this temperature needs to be adjusted for higher or lower solar intensity. The warmer temperature component is shown to represent active region contributions to the spectra and varies between 5 MK to 6 MK. GOES XRS-B data between 1-8 Angstroms is used to validate this model and it is found that the ratio between the SWM model irradiance and the GOES XRS-B irradiance is close to unity on average. MinXSS-1 spectra during quiescent solar conditions have very low counts beyond around 3 keV. The SWM model can generate MinXSS-1 or DAXSS spectra at very high spectral resolution and with extended energy ranges to fill in gaps between measurements and extend predictions back to 1947

    Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

    Get PDF
    This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω)H^s(\Omega) and H~s(Ω)\widetilde{H}^s(\Omega), for s∈Rs\in \mathbb{R} and an open Ω⊂Rn\Omega\subset \mathbb{R}^n. We exhibit examples in one and two dimensions of sets Ω\Omega for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω\Omega is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    Quantum state transfer and entanglement distribution among distant nodes in a quantum network

    Get PDF
    We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.Comment: 4 pages, 3 postscript figure

    Multiphoton localization and propagating quantum gap solitons in a frequency gap medium

    Get PDF
    The many-particle spectrum of an isotropic frequency gap medium doped with impurity resonance atoms is studied using the Bethe ansatz technique. The spectrum is shown to contain pairs of quantum correlated ``gap excitations'' and their heavy bound complexes (``gap solitons''), enabling the propagation of quantum information within the classically forbidden gap. In addition, multiparticle localization of the radiation and the medium polarization occurs when such a gap soliton is pinned to the impurity atom.Comment: 8 pages, RevTEX, to appear in Phys. Rev. Let

    Neutrinos in a spherical box

    Full text link
    In the present paper we study some neutrino properties as they may appear in the low energy neutrinos emitted in triton decay with maximum neutrino energy of 18.6 keV. The technical challenges to this end can be achieved by building a very large TPC capable of detecting low energy recoils, down to a a few tenths of a keV, within the required low background constraints. More specifically We propose the development of a spherical gaseous TPC of about 10-m in radius and a 200 Mcurie triton source in the center of curvature. One can list a number of exciting studies, concerning fundamental physics issues, that could be made using a large volume TPC and low energy antineutrinos: 1) The oscillation length involving the small angle of the neutrino mixing matrix, directly measured in this disappearance experiment, is fully contained inside the detector. Measuring the counting rate of neutrino-electron elastic scattering as a function of the distance of the source will give a precise and unambiguous measurement of the oscillation parameters free of systematic errors. In fact first estimates show that even with a year's data taking a sensitivity of a few percent for the measurement of the above angle will be achieved. 2) The low energy detection threshold offers a unique sensitivity for the neutrino magnetic moment which is about two orders of magnitude beyond the current experimental limit. 3) Scattering at such low neutrino energies has never been studied and any departure from the expected behavior may be an indication of new physics beyond the standard model. In this work we mainly focus on the various theoretical issues involved including a precise determination of the Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia, June 23, 200

    Fractional smoothness and applications in finance

    Full text link
    This overview article concerns the notion of fractional smoothness of random variables of the form g(XT)g(X_T), where X=(Xt)t∈[0,T]X=(X_t)_{t\in [0,T]} is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete time hedging errors. We close the review by indicating some further developments.Comment: Chapter of AMAMEF book. 20 pages
    • 

    corecore