17,428 research outputs found
On the Formation of Boxy and Disky Elliptical Galaxies
The origin of boxy and disky elliptical galaxies is investigated. The results
of two collisionless N-body simulations of spiral-spiral mergers with mass
ratios of 1:1 and 3:1 are discussed and the projected properties of the merger
remnants are investigated. It is shown that the equal-mass merger leads to an
anisotropic, slowly rotating system with preferentially boxy isophotes and
significant minor axis rotation. The unequal-mass merger results in the
formation of a rotationally supported elliptical with disky isophotes and small
minor axis rotation. The observed scatter in the kinematical and isophotal
properties of both classes of elliptical galaxies can be explained by
projection effects.Comment: 12 pages, incl. 5 figures, accepted by ApJ Letter
Spatially resolved spectroscopy of Coma cluster early-type galaxies IV. Completing the dataset
The long-slit spectra obtained along the minor axis, offset major axis and
diagonal axis are presented for 12 E and S0 galaxies of the Coma cluster drawn
from a magnitude-limited sample studied before. The rotation curves, velocity
dispersion profiles and the H_3 and H_4 coefficients of the Hermite
decomposition of the line of sight velocity distribution are derived. The
radial profiles of the Hbeta, Mg, and Fe line strength indices are measured
too. In addition, the surface photometry of the central regions of a subsample
of 4 galaxies recently obtained with Hubble Space Telescope is presented. The
data will be used to construct dynamical models of the galaxies and study their
stellar populations.Comment: 40 pages, 7 figures, 6 tables. Accepted for publication in ApJ
Eigenvalue Integro-Differential Equations for Orthogonal Polynomials on the Real Line
The one-dimensional harmonic oscillator wave functions are solutions to a
Sturm-Liouville problem posed on the whole real line. This problem generates
the Hermite polynomials. However, no other set of orthogonal polynomials can be
obtained from a Sturm-Liouville problem on the whole real line. In this paper
we show how to characterize an arbitrary set of polynomials orthogonal on
in terms of a system of integro-differential equations of
Hartree-Fock type. This system replaces and generalizes the linear differential
equation associated with a Sturm-Liouville problem. We demonstrate our results
for the special case of Hahn-Meixner polynomials.Comment: 28 pages, Latex, U. Texas at Austin/ Washington University preprin
Homogeneity of Stellar Populations in Early-Type Galaxies with Different X-ray Properties
We have found the stellar populations of early-type galaxies are homogeneous
with no significant difference in color or Mg2 index, despite the dichotomy
between X-ray extended early-type galaxies and X-ray compact ones. Since the
X-ray properties reflect the potential gravitational structure and hence the
process of galaxy formation, the homogeneity of the stellar populations implies
that the formation of stars in early-type galaxies predat es the epoch when the
dichotomy of the potential structure was established.Comment: 6 pages, 5 figures, accepted for publication in Ap
The Stellar Kinematic Fields of NGC 3379
We have measured the stellar kinematic profiles of NGC 3379 along four
position angles using the MMT. The data extend 90" from the center, at
essentially seeing-limited resolution out to 17". The mean velocities and
dispersions have total errors better than 10 km/s (frequently better than 5
km/s) out to 55". We find very weak (3 km/s) rotation on the minor axis
interior to 12", and no detectable rotation above 6 km/s from 12" to 50" or
above 16 km/s out to 90" (95% confidence). However, a Fourier reconstruction of
the mean velocity field from all 4 sampled PAs does indicate a 5 degree twist
of the kinematic major axis, opposite to the known isophotal twist. The h_3 and
h_4 parameters are small over the entire observed region. The
azimuthally-averaged dispersion profile joins smoothly at large radii with the
dispersions of planetary nebulae. Unexpectedly, we find sharp bends in the
major-axis rotation curve, also visible (though less pronounced) on the
diagonal position angles. The outermost bend coincides in position with other
sharp kinematic features: an abrupt flattening of the dispersion profile, and
local peaks in h_3 and h_4. All of these features are in a region where the
surface brightness profile departs significantly from a de Vaucouleurs law.
Features such as these are not generally known in ellipticals owing to a lack
of data at comparable resolution; however, very similar behavior is seen the
kinematics of the edge-on S0 NGC 3115. We discuss the suggestion that NGC 3379
could be a misclassified S0; preliminary results from dynamical modeling
indicate that it may be a flattened, weakly triaxial system seen in an
orientation that makes it appear round.Comment: 31 pages incl. 4 tables, Latex, AASTeX v4.0, with 17 eps figures. To
appear in The Astronomical Journal, February 199
The Isophotal Structure of Early-Type Galaxies in the SDSS: Dependence on AGN Activity and Environment
We study the dependence of the isophotal shape of early-type galaxies on
their absolute B-band magnitude, their dynamical mass, and their nuclear
activity and environment, using an unprecedented large sample of 847 early-type
galaxies identified in the SDSS by Hao et al (2006). We find that the fraction
of disky galaxies smoothly decreases with increasing luminosity. The large
sample allows us to describe these trends accurately with tight linear
relations that are statistically robust against the uncertainty in the
isophotal shape measurements. There is also a host of significant correlations
between the disky fraction and indicators of nuclear activity (both in the
optical and in the radio) and environment (soft X-rays, group mass, group
hierarchy). Our analysis shows however that these correlations can be
accurately matched by assuming that the disky fraction depends only on galaxy
luminosity or mass. We therefore conclude that neither the level of activity,
nor group mass or group hierarchy help in better predicting the isophotal shape
of early-type galaxies.Comment: 31 pages, 10 figures, accepted for publication in Ap
Constraints on galaxy formation from alpha-enhancement in luminous elliptical galaxies
We explore the formation of alpha-enhanced and metal-rich stellar populations
in the nuclei of luminous ellipticals under the assumption of two extreme
galaxy formation scenarios based on hierarchical clustering, namely a fast
clumpy collapse and the merger of two spirals. We investigate the parameter
space of star formation time-scale, IMF slope, and stellar yields. In
particular, the latter add a huge uncertainty in constraining time-scales and
IMF slopes. We find that -- for Thielemann, Nomoto & Hashimoto nucleosynthesis
-- in a fast clumpy collapse scenario an [alpha/Fe] overabundance of approx.
0.2 dex in the high metallicity stars can be achieved with a Salpeter IMF and
star formation time-scales of the order 10^9 yr. The scenario of two merging
spirals which are similar to our Galaxy, instead, fails to reproduce
alpha-enhanced abundance ratios in the metal-rich stars, unless the IMF is
flattened during the burst ignited by the merger. This result is independent of
the burst time-scale. We suggest that abundance gradients give hints to
distinguish between the two extreme formation scenarios considered in this
paper.Comment: Accepted for publication in MNRAS, LaTex 2.09 with mn.sty, 13 pages,
5 figure
Generating Survival Times to Simulate Cox Proportional Hazards Models
This paper discusses techniques to generate survival times for simulation studies regarding Cox proportional hazards models. In linear regression models, the response variable is directly connected with the considered covariates, the regression coefficients and the simulated random errors. Thus, the response variable can be generated from the regression function, once the regression coefficients and the error distribution are specified. However, in the Cox model, which is formulated via the hazard function, the effect of the covariates have to be translated from the hazards to the survival times, because the usual software packages for estimation of Cox models require the individual survival time data. A general formula describing the relation between the hazard and the corresponding survival time of the Cox model is derived. It is shown how the exponential, the Weibull and the Gompertz distribution can be used to generate appropriate survival times for simulation studies. Additionally, the general relation between hazard and survival time can be used to develop own distributions for special situations and to handle flexibly parameterized proportional hazards models. The use of other distributions than the exponential distribution only is indispensable to investigate the characteristics of the Cox proportional hazards model, especially in non-standard situations, where the partial likelihood depends on the baseline hazard
- …