414 research outputs found

    Huge nonequilibrium magnetoresistance in hybrid superconducting spin valves

    Full text link
    A hybrid ferromagnet-superconductor spin valve is proposed. Its operation relies on the interplay between nonequilibrium transport and proximity-induced exchange coupling in superconductors. Huge tunnel magnetoresistance values as large as some 10^6% can be achieved in suitable ferromagnet-superconductor combinations under proper voltage biasing. The controllable spin-filter nature of the structure combined with its intrinsic simplicity make this setup attractive for low-temperature spintronic applications where reduced power dissipation is an additional requirement.Comment: 4 pages, 4 figure

    Cooling electrons from 1 K to 400 mK with V-based nanorefrigerators

    Full text link
    The fabrication and operation of V-based superconducting nanorefrigerators is reported. Specifically, electrons in an Al island are cooled thanks to hot-quasiparticle extraction provided by tunnel-coupled V electrodes. Electronic temperature reduction down to 400 mK starting from 1 K is demonstrated with a cooling power ~20 pW at 1 K for a junction area of 0.3 micron^2. The present architecture extends to higher temperatures refrigeration based on tunneling between superconductors and paves the way to the implementation of a multi-stage on-chip cooling scheme operating from above 1 K down to the mK regime.Comment: 3+ pages, 4 color figure

    Ultra-low dissipation Josephson transistor

    Full text link
    A superconductor-normal metal-superconductor (SNS) transistor based on superconducting microcoolers is presented. The proposed 4-terminal device consists of a long SNS Josephson junction whose N region is in addition symmetrically connected to superconducting reservoirs through tunnel barriers (I). Biasing the SINIS line allows to modify the quasiparticle temperature in the weak link, thus controlling the Josephson current. We show that, in suitable voltage and temperature regimes, large supercurrent enhancements can be achieved with respect to equilibrium, due to electron ``cooling'' generated by the control voltage. The extremely low power dissipation intrinsic to the structure makes this device relevant for a number of electronic applications.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Mesoscopic supercurrent transistor controlled by nonequilibrium cooling

    Full text link
    The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor (SINIS) mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a π\pi-junction are striking features leading to a fully tunable structure. The role of the degree of nonequilibrium, temperature, and materials choice as well as features like noise, switching time, and current and power gain are also addressed.Comment: 8 pages, 9 figures, submitted to Journal of Low Temperature Physic

    Tailoring Josephson coupling through superconductivity-induced nonequilibrium

    Get PDF
    The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor (SINIS) mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a π\pi-junction are striking features leading to a fully tunable structure.Comment: 4 pages, 4 figure

    Ultra-efficient Cooling in Ferromagnet-Superconductor Microrefrigerators

    Full text link
    A promising scheme for electron microrefrigeration based on ferromagnet-superconductor contacts is presented. In this setup, cooling power densities up to 600 nW/μ\mum2^2 can be achieved leading to electronic temperature reductions largely exceeding those obtained with existing superconductor-normal metal tunnel contacts. Half-metallic CrO2_2/Al bilayers are indicated as ideal candidates for the implementation of the device.Comment: 9 pages, 3 figures, submitted to Applied Physics Letter

    Singlet-triplet transition in a few-electron lateral InGaAs-InAlAs quantum dot

    Full text link
    The magnetic-field evolution of Coulomb blockade peaks in lateral InGaAs/InAlAs quantum dots in the few-electron regime is reported. Quantum dots are defined by gates evaporated onto a 60 nm-thick hydrogen silsesquioxane insulating film. A gyromagnetic factor of 4.4 is measured via zero-bias spin spectroscopy and a transition from singlet to triplet spin configuration is found at an in-plane magnetic field B = 0.7 T. This observation opens the way to the manipulation of singlet and triplet states at moderate fields and its relevance for quantum information applications will be discussed.Comment: 4 pages, 3 figure

    Coherent transport in Nb/delta-doped-GaAs hybrid microstructures

    Full text link
    Coherent transport in Nb/GaAs superconductor-semiconductor microstructures is presented. The structures fabrication procedure is based on delta-doped layers grown by molecular-beam-epitaxy near the GaAs surface, followed by an As cap layer to protect the active semiconductor layers during ex situ transfer. The superconductor is then sputter deposited in situ after thermal desorption of the protective layer. Two types of structures in particular will be discussed, i.e., a reference junction and the engineered one that contains an additional insulating AlGaAs barrier inserted during the growth in the semiconductor. This latter configuration may give rise to controlled interference effects and realizes the model introduced by de Gennes and Saint-James in 1963. While both structures show reflectionless tunneling-dominated transport, only the engineered junction shows additionally a low-temperature single marked resonance peaks superimposed to the characteristic Andreev-dominated subgap conductance. The analysis of coherent magnetotransport in both microstructures is successfully performed within the random matrix theory of Andreev transport and ballistic effects are included by directly solving the Bogoliubov-de Gennes equations. The impact of junction morphology on reflectionless tunneling and the application of the employed fabrication technique to the realization of complex semiconductor-superconductor systems are furthermore discussed.Comment: 9 pages, 8 figures, invited review paper, to be published in Mod. Phys. Lett.

    Impact of classical forces and decoherence in multi-terminal Aharonov-Bohm networks

    Full text link
    Multi-terminal Aharonov-Bohm (AB) rings are ideal building blocks for quantum networks (QNs) thanks to their ability to map input states into controlled coherent superpositions of output states. We report on experiments performed on three-terminal GaAs/Al_(x)Ga_(1-x)As AB devices and compare our results with a scattering-matrix model including Lorentz forces and decoherence. Our devices were studied as a function of external magnetic field (B) and gate voltage at temperatures down to 350 mK. The total output current from two terminals while applying a small bias to the third lead was found to be symmetric with respect to B with AB oscillations showing abrupt phase jumps between 0 and pi at different values of gate voltage and at low magnetic fields, reminiscent of the phase-rigidity constraint due to Onsager-Casimir relations. Individual outputs show quasi-linear dependence of the oscillation phase on the external electric field. We emphasize that a simple scattering-matrix approach can not model the observed behavior and propose an improved description that can fully describe the observed phenomena. Furthermore, we shall show that our model can be successfully exploited to determine the range of experimental parameters that guarantee a minimum oscillation visibility, given the geometry and coherence length of a QN.Comment: 7 pages, 8 figure

    Resonant Transport in Nb/GaAs/AlGaAs/GaAs Microstructures

    Get PDF
    Resonant transport in a hybrid semiconductor-superconductor microstructure grown by MBE on GaAs is presented. This structure experimentally realizes the prototype system originally proposed by de Gennes and Saint-James in 1963 in \emph{all}-metal structures. A low temperature single peak superimposed to the characteristic Andreev-dominated subgap conductance represents the mark of such resonant behavior. Random matrix theory of quantum transport was employed in order to analyze the observed magnetotransport properties and ballistic effects were included by directly solving the Bogoliubov-de Gennes equations.Comment: 7 pages REVTeX, 4 figures, to be published by World Scientific in Proceedings of International Symposium on Mesoscopic Superconductivity and Spintronics (NTT R&D Center Atsugi, Japan, March 2002
    corecore