58,551 research outputs found
Calibration of the CH and CN Variations Among Main Sequence Stars in M71 and in M13
An analysis of the CN and CH band strengths measured in a large sample of M71
and M13 main sequence stars by Cohen (1999a,b) is undertaken using synthetic
spectra to quantify the underlying C and N abundances. In the case of M71 it is
found that the observed CN and CH band strengths are best matched by the
{\it{identical}} C/N/O abundances which fit the bright giants, implying: 1)
little if any mixing is taking place during red giant branch ascent in M71, and
2) a substantial component of the C and N abundance inhomogeneities is in place
before the main sequence turn-off. The unlikelihood of mixing while on the main
sequence requires an explanation for the abundance variations which lies
outside the present stars (primordial inhomogeneities or intra-cluster self
enrichment). For M13 it is shown that the 3883\AA CN bands are too weak to be
measured in the spectra for any reasonable set of expected compositions. A
similar situation exists for CH as well. However, two of the more luminous
program stars do appear to have C abundances considerably greater than those
found among the bright giants thereby suggesting deep mixing has taken place on
the M13 red giant branch.Comment: 14 pages, 4 figures, accepted for publication by A
Correlation functions, Bell's inequalities and the fundamental conservation laws
I derive the correlation function for a general theory of two-valued spin
variables that satisfy the fundamental conservation law of angular momentum.
The unique theory-independent correlation function is identical to the quantum
mechanical correlation function. I prove that any theory of correlations of
such discrete variables satisfying the fundamental conservation law of angular
momentum violates the Bell's inequalities. Taken together with the Bell's
theorem, this result has far reaching implications. No theory satisfying
Einstein locality, reality in the EPR-Bell sense, and the validity of the
conservation law can be constructed. Therefore, all local hidden variable
theories are incompatible with fundamental symmetries and conservation laws.
Bell's inequalities can be obeyed only by violating a conservation law. The
implications for experiments on Bell's inequalities are obvious. The result
provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure
Improving the conductance of carbon nanotube networks through resonant momentum exchange
We present a mechanism to improve the conductivity of carbon nanotube (CNT)
networks by improving the conductance between CNTs of different chirality. We
argue generally that a weak perturbation can greatly improve the inter-tube
conductance by allowing momentum-conserving tunnelling. The mechanism is
verified with a tight-binding model, allowing an investigation of its impact
for a network containing a range of chiralities. We discuss practical
implementations, and conclude that it may be effected by weak physical
interactions, and therefore does not require chemical bonding to the CNTs.Comment: 6 pages, 4 figure
Cultivation and use of bryophytes as experimental material
Bryophytes can be grown successfully if keptmoist, supplied
with nutrients, and out of direct sunlight. They remain greener
on peat than on sand. However, difficulties were encountered when
attempting to grow mosses and liverworts in an unshaded
glasshouse, in spring and summer. Even spraying hourly with water
did not prevent scorching and desiccation.
Growth can be measured using a variety of techniques; height
measurement and shoot elongation from thread markers proved the
most reliabl
Pair plasma cushions in the hole-boring scenario
Pulses from a 10 PW laser are predicted to produce large numbers of
gamma-rays and electron-positron pairs on hitting a solid target. However, a
pair plasma, if it accumulates in front of the target, may partially shield it
from the pulse. Using stationary, one-dimensional solutions of the two-fluid
(electron-positron) and Maxwell equations, including a classical radiation
reaction term, we examine this effect in the hole-boring scenario. We find the
collective effects of a pair plasma "cushion" substantially reduce the
reflectivity, converting the absorbed flux into high-energy gamma-rays. There
is also a modest increase in the laser intensity needed to achieve threshold
for a non-linear pair cascade.Comment: 17 pages, 5 figures. Accepted for publication in Plasma Physics and
Controlled Fusion. Typos corrected, reference update
- …