402 research outputs found

    Optical fiber tactile sensor

    Get PDF
    A tactile sensor comprises an array of cells which are covered by an elastic membrane, having an exposed surface which is adapted to come in contact with an object. Light is conducted to each cell from a light source by an optical fiber which terminates at the cell. Reflected light from the cell is conducted by an optical fiber to a light processor, which senses changes in the light received thereby from an ambient level whenever an object comes in contact with the membrane surface above the cell

    Optimized braking of landing vehicles with atmospheric drag

    Get PDF
    Decelerating effect of atmospheric drag assures minimum fuel consumption and time expenditure during braking for soft landing

    Terminal guidance sensor system

    Get PDF
    A system is described for guiding a claw to the proper distance and into the proper orientation in yaw and pitch, to engage a grappling fixture. The system includes four proximity sensors on the claw, that are arranged at corners of an imaginary square, which sense the distance to the top surface of the grappling fixture. If a pair of sensors at opposite corners of the square sense a different distance to the top surface of the grappling fixture, then it is known that the claw is rotated about a corresponding axis with respect to the plane of the grappling fixture

    Man-machine interface issues in space telerobotics: A JPL research and development program

    Get PDF
    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years

    Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    Get PDF
    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call

    Experimental results with a six-degree-of-freedom force-reflecting hand controller

    Get PDF
    Control experiments performed using an isotonic joystick connected to a six degree-of-freedom manipulator equipped with a six dimensional force-torque sensor at the base of the manipulator end effector are described. The preliminary control experiments were aimed at the investigation of the human operators' ability to command and control forces in different directions by varying the information conditions and the values of the feedforward and feedback command gains in the bilateral control loop. The main conclusions are: (1) a quantified graphic display of force-torque information can considerably enhance the operator's ability to perform a quantitatively sharp force-torque control, and (2) there seems to be a task dependent optimal combination of the feedforward and feedback command gain values which provide a dynamically smooth and stable bilateral control performance

    Event-driven displays for manipulator control

    Get PDF
    The problem of constructing event-related information displays from multidimensional data generated by proximity, force-torque and tactile sensors integrated with the terminal device of a remotely controlled manipulator is considered. Event-driven displays are constructed by using appropriate algorithms acting on sensory data in real time. Event-driven information displays lessen the operator's workload and improve control performance. The paper describes and discusses several event-driven display examples that were implemented in the JPL teleoperator project, including a brief outline of the data handling system which drives the graphics display in real time. The paper concludes with a discussion of future plans to integrate event-driven displays with visual (TV) information

    ROTEX-TRIIFEX: Proposal for a joint FRG-USA telerobotic flight experiment

    Get PDF
    The concepts and main elements of a RObot Technology EXperiment (ROTEX) proposed to fly with the next German spacelab mission, D2, are presented. It provides a 1 meter size, six axis robot inside a spacelab rack, equipped with a multisensory gripper (force-torque sensors, an array of range finders, and mini stereo cameras). The robot will perform assembly and servicing tasks in a generic way, and will grasp a floating object. The man machine and supervisory control concepts for teleoperation from the spacelab and from ground are discussed. The predictive estimation schemes for an extensive use of time-delay compensating 3D computer graphics are explained

    Displays for supervisory control of manipulators

    Get PDF
    The problem of displaying information generated by sensors attached to the terminal device of a remotely controlled manipulator is considered. The sensors under consideration are proximity, force-torque, tactile and slip-page sensors. The paper describes and evaluates several examples that have been implemented in the JPL teleoperator project using audio and graphic displays of information generated by four proximity sensors attached to a manipulator end effector. Design schemes are also discussed related to the display of information generated by a six-dimensional force-torque sensor, a multipoint proportional tactile sensor, and a directional slippage sensor. The paper concludes with a discussion of future integrated displays of visual (TV) and handbased sensor information

    An 8-DOF dual-arm system for advanced teleoperation performance experiments

    Get PDF
    This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley
    corecore