51 research outputs found

    s/alpha/Fe Abundance Ratios in Halo Field Stars: Is there a Globular Cluster Connection?

    Full text link
    We try to understand the s- and r-process elements vs Ti/Fe plots derived by Jehin et al. (1999) for mildly metal-poor stars within the framework of the analytical semi-empirical models for these elements by Pagel & Tautvaisiene (1995, 1997). Jehin et al. distinguished two Pop II subgroups: IIa with alpha/Fe and s-elements/Fe increasing together, which they attribute to pure SNII activity, and IIb with constant alpha/Fe and a range in s/Fe which they attribute to a prolonged accretion phase in parent globular clusters. However, their sample consists mainly of thick-disk stars with only 4 clear halo members, of which two are `anomalous' in the sense defined by Nissen & Schuster (1997). Only the remaining two halo stars (and one in Nissen & Schuster's sample) depart significantly from Y/Ti (or s/alpha) ratios predicted by our model.Comment: 6 pages, 5 figures To appear in: Roma-Trieste Workshop 1999: `The Chemical Evolution of the Milky Way: Stars vs Clusters', Vulcano Sept. 1999. F. Giovanelli & F. Matteucci (eds), Kluwer, Dordrech

    Observational Constraints to the Evolution of Massive Stars

    Full text link
    We consider some aspects of the evolution of massive stars which can only be elucidated by means of "indirect" observations, i.e. measurements of the effects of massive stars on their environments. We discuss in detail the early evolution of massive stars formed in high metallicity regions as inferred from studies of HII regions in external galaxies.Comment: 6 pages, 1 figure; Invited Paper presented at the Roma-Trieste Workshop 1999 "The Chemical Evolution of the Milky Way: Stars versus Clusters", Vulcano Island (ME, Italy), 20-24 September, 1999, eds. F. Giovannelli & F. Matteucci, Kluwer-Holland (in press

    Controlling passively-quenched single photon detectors by bright light

    Get PDF
    Single photon detectors based on passively-quenched avalanche photodiodes can be temporarily blinded by relatively bright light, of intensity less than a nanowatt. I describe a bright-light regime suitable for attacking a quantum key distribution system containing such detectors. In this regime, all single photon detectors in the receiver Bob are uniformly blinded by continuous illumination coming from the eavesdropper Eve. When Eve needs a certain detector in Bob to produce a click, she modifies polarization (or other parameter used to encode quantum states) of the light she sends to Bob such that the target detector stops receiving light while the other detector(s) continue to be illuminated. The target detector regains single photon sensitivity and, when Eve modifies the polarization again, produces a single click. Thus, Eve has full control of Bob and can do a successful intercept-resend attack. To check the feasibility of the attack, 3 different models of passively-quenched detectors have been tested. In the experiment, I have simulated the intensity diagrams the detectors would receive in a real quantum key distribution system under attack. Control parameters and side effects are considered. It appears that the attack could be practically possible.Comment: Experimental results from a third detector model added. Minor corrections and edits made. 11 pages, 10 figure

    The effects of a Variable IMF on the Chemical Evolution of the Galaxy

    Get PDF
    In this work we explore the effects of adopting an initial mass function (IMF) variable in time on the chemical evolution of the Galaxy. In order to do that we adopt a chemical evolution model which assumes two main infall episodes for the formation of the Galaxy. We study the effects on such a model of different IMFs. First, we use a theoretical one based on the statistical description of the density field arising from random motions in the gas. This IMF is a function of time as it depends on physical conditions of the site of star formation. We also investigate the behaviour of the model predictions using other variable IMFs, parameterized as a function of metallicity. Our results show that the theoretical IMF when applied to our model depends on time but such time variation is important only in the early phases of the Galactic evolution, when the IMF is biased towards massive stars. We also show that the use of an IMF which is a stronger function of time does not lead to a good agreement with the observational constraints suggesting that if the IMF varied this variation should have been small. Our main conclusion is that the G-dwarf metallicity distribution is best explained by infall with a large timescale and a constant IMF, since it is possible to find variable IMFs of the kind studied here, reproducing the G-dwarf metallicity but this worsens the agreement with other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds. (Kluwer, Dordrecht) in pres

    A High Deuterium Abundance at z=0.7

    Get PDF
    Of the light elements, the primordial abundance of deuterium, (D/H)_p, provides the most sensitive diagnostic for the cosmological mass density parameter Omega_B. Recent high redshift (D/H) measurements are highly discrepant, although this may reflect observational uncertainties. The larger (D/H) values, which imply a low Omega_B and require the Universe to be dominated by non-baryonic matter (dynamical studies indicate a higher total density parameter), cause problems for galactic chemical evolution models since they have difficulty in reproducing the large decline down to the lower present-day (D/H). Conversely, low (D/H) values imply an Omega_B greater than derived from ^7Li and ^4He abundance measurements, and may require a deuterium abundance evolution that is too low to easily explain. Here we report the first measurement at intermediate redshift, where the observational difficulties are smaller, of a gas cloud with ideal characteristics for this experiment. Our analysis of the z = 0.7010 absorber toward 1718+4807 indicates (D/H) = 2.0 +/- 0.5 x 10^{-4} which is in the high range. This and other independent observations suggests there may be a cosmological inhomogeneity in (D/H)_p of at least a factor of ten.Comment: 6 pages, 1 figur

    The Cosmological Baryon Density from the Deuterium Abundance at a redshift z = 3.57

    Full text link
    We present a measurement of the deuterium to hydrogen ratio in a quasar absorption system at redshift z = 3.57 towards QSO 1937-1009. We use a two component fit, with redshifts determined from unsaturated metal lines, to fit the hydrogen and deuterium features simultaneously. We find a low value of D/H = 2.3 \pm 0.6 \times 10^{-5}, which does not agree with other measurements of high D/H (Songaila et al. 1994, Carswell et al. 1994). The absorption system is very metal poor, with metallicities less than 1/100 solar. Standard models of chemical evolution show the astration of deuterium is limited to a few percent from primordial for systems this metal-poor, so we believe our value represents the primordial one. Using predictions of standard big-bang nucleosynthesis and measurements of the cosmic microwave background, our measurement gives the density of baryons in units of the critical density, Ωbh2=0.024±0.006\Omega_b h^2 = 0.024 \pm 0.006, where H_0 = 100 h km s^{-1] Mpc^{-1}.Comment: 10 pages, 2 Figures, also available at http://nately.ucsd.edu/ ; submitted to Natur

    The primordial Helium-4 abundance determination: systematic effects

    Get PDF
    By extrapolating to O/H = N/H = 0 the empirical correlations Y-O/H and Y-N/H defined by a relatively large sample of ~ 45 Blue Compact Dwarfs (BCDs), we have obtained a primordial 4Helium mass fraction Yp= 0.2443+/-0.0015 with dY/dZ = 2.4+/-1.0. This result is in excellent agreement with the average Yp= 0.2452+/-0.0015 determined in the two most metal-deficient BCDs known, I Zw 18 (Zsun/50) and SBS 0335-052 (Zsun/41), where the correction for He production is smallest. The quoted error (1sigma) of < 1% is statistical and does not include systematic effects. We examine various systematic effects including collisional excitation of Hydrogen lines, ionization structure and temperature fluctuation effects, and underlying stellar HeI absorption, and conclude that combining all systematic effects, our Yp may be underestimated by ~ 2-4%. Taken at face value, our Yp implies a baryon-to-photon number ratio eta = 4.7x10^-10 and a baryon mass fraction Omega_b h^2_{100} = 0.017+/-0.005 (2sigma), consistent with the values obtained from deuterium and Cosmic Microwave Background measurements. Correcting Yp upward by 2-4% would make the agreement even better.Comment: 12 pages, 5 PS figures, to appear in "Matter in the Universe", ed P. Jetzer, K. Pretzl and R. von Steiger, Kluwer, Dordrecht (2002

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The Îł\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    The New Galaxy: Signatures of its Formation

    Get PDF
    The formation and evolution of galaxies is one of the great outstanding problems of astrophysics. Within the broad context of hierachical structure formation, we have only a crude picture of how galaxies like our own came into existence. A detailed physical picture where individual stellar populations can be associated with (tagged to) elements of the protocloud is far beyond our current understanding. Important clues have begun to emerge from both the Galaxy (near-field cosmology) and the high redshift universe (far-field cosmology). Here we focus on the fossil evidence provided by the Galaxy. Detailed studies of the Galaxy lie at the core of understanding the complex processes involved in baryon dissipation. This is a necessary first step towards achieving a successful theory of galaxy formation.Comment: 51 pages (with figs embedded) + 4 colour plates. The interested reader is strongly encouraged to ignore the latex version and low res figures within; instead, download the properly typeset paper (6 Mby) and colour plates (3 Mby) from ftp://www.aao.gov.au/pub/local/jbh/araa/Galley
    • …
    corecore