21 research outputs found

    Gibberellic acid (GA) increases fibre cell differentiation and secondary cell-wall deposition in spring wheat (Triticum aestivum L.) culms

    Get PDF
    Abstract The role of gibberellic acid (GA) in differentiation and secondary cell-wall deposition of fibre cells of spring wheat (Triticum aestivum) culms was studied using applications of GA and chlormequat (a GA biosynthesis inhibitor). In certain genotypes, higher GA levels may increase the number of cortical fibre cell files by changing cell fate from parenchyma to fibre, and induce thicker secondary cell-walls

    Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum.

    No full text
    The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity.

    Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum

    No full text
    The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 × 103 full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial “return ticket from genomic obesity.”The research reported here was supported by grants from the Academy of Finland Genome Research Program and the European Union Directorate for Biotechnology research program on Molecular Tools for Biodiversity. E.N. thanks the Israel Discount Bank Chair of Evolutionary Biology and the Ancell-Teicher Research Foundation for Genetics and Molecular Evolution for financial support.Peer reviewe
    corecore