275 research outputs found

    Potential impacts of genetic use restriction technologies (GURTs) on agrobiodiversity and agricultural production systems

    Get PDF
    Development and application of GURT as an appropriation mechanism may potentially have considerable impact on agriculture, the environment and the food security of rural areas in developing countries. Positive impacts may include increased investments in breeding as a result of increased intellectual property protection. Increased investments may contribute to higher yields and more advanced varieties, and thus to increased food production, a more sustainable production, and better consumer products. Potential negative impacts have been identified as well. These may require further discussion and close attention by regulatory authorities

    Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions

    Get PDF
    Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC¿MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formatio

    Silencing of germacrene A synthase genes reduces guaianolide oxalate content in <i>Cichorium intybus</i> L.

    Get PDF
    Chicory (Cichorium intybus L.) is a medicinal and industrial plant from the Asteraceae family that produces a variety of sesquiterpene lactones (STLs), most importantly bitter guaianolides: lactucin, lactucopicrin and 8-deoxylactucin as well as their modified forms such as oxalates. These compounds have medicinal properties; however, they also hamper the extraction of inulin – a very important food industry product from chicory roots. The first step in guaianolide biosynthesis is catalyzed by germacrene A synthase (GAS) which in chicory exists in two isoforms – GAS long (encoded by CiGASlo) and GAS short (encoded by CiGASsh). AmiRNA silencing was used to obtain plants with reduced GAS gene expression and level of downstream metabolites, guaianolide-15-oxalates, as the major STLs in chicory. This approach could be beneficial for engineering new chicory varieties with varying STL content, and especially varieties with reduced bitter compounds more suitable for inulin production

    The mQTL hotspot on linkage group 16 for phenolic compounds in apple fruits is probably the result of a leucoanthocyanidin reductase gene at that locus

    Get PDF
    BACKGROUND: Our previous study on ripe apples from a progeny of a cross between the apple cultivars 'Prima' and 'Fiesta' showed a hotspot of mQTLs for phenolic compounds at the top of LG16, both in peel and in flesh tissues. In order to find the underlying gene(s) of this mQTL hotspot, we investigated the expression profiles of structural and putative transcription factor genes of the phenylpropanoid and flavonoid pathways during different stages of fruit development in progeny genotypes. RESULTS: Only the structural gene leucoanthocyanidin reductase (MdLAR1) showed a significant correlation between transcript abundance and content of metabolites that mapped on the mQTL hotspot. This gene is located on LG16 in the mQTL hotspot. Progeny that had inherited one or two copies of the dominant MdLAR1 alleles (Mm, MM) showed a 4.4- and 11.8-fold higher expression level of MdLAR1 respectively, compared to the progeny that had inherited the recessive alleles (mm). This higher expression was associated with a four-fold increase of procyanidin dimer II as one representative metabolite that mapped in the mQTL hotspot. Although expression level of several structural genes were correlated with expression of other structural genes and with some MYB and bHLH transcription factor genes, only expression of MdLAR1 was correlated with metabolites that mapped at the mQTL hotspot.MdLAR1 is the only candidate gene that can explain the mQTL for procyanidins and flavan-3-ols. However, mQTLs for other phenylpropanoids such as phenolic esters, dihydrochalcones and flavonols, that appear to map at the same locus, have so far not been considered to be dependent on LAR, as their biosynthesis does not involve LAR activity. An explanation for this phenomenon is discussed. CONCLUSIONS: Transcript abundances and genomic positions indicate that the mQTL hotspot for phenolic compounds at the top of LG16 is controlled by the MdLAR1 gene. The dominant allele of the MdLAR1 gene, causing increased content of metabolites that are potentially health beneficial, could be used in marker assisted selection of current apple breeding programs and for cisgenesi
    corecore