13 research outputs found

    First administration to man of Org 25435, an intravenous anaesthetic: A Phase 1 Clinical Trial

    Get PDF
    BACKGROUND: Org 25435 is a new water-soluble alpha-amino acid ester intravenous anaesthetic which proved satisfactory in animal studies. This study aimed to assess the safety, tolerability and efficacy of Org 25435 and to obtain preliminary pharmacodynamic and pharmacokinetic data. METHODS: In the Short Infusion study 8 healthy male volunteers received a 1 minute infusion of 0.25, 0.5, 1.0, or 2.0 mg/kg (n = 2 per group); a further 10 received 3.0 mg/kg (n = 5) or 4.0 mg/kg (n = 5). Following preliminary pharmacokinetic modelling 7 subjects received a titrated 30 minute Target Controlled Infusion (TCI), total dose 5.8-20 mg/kg. RESULTS: Within the Short Infusion study, all subjects were successfully anaesthetised at 3 and 4 mg/kg. Within the TCI study 5 subjects were anaesthetised and 2 showed signs of sedation. Org 25435 caused hypotension and tachycardia at doses over 2 mg/kg. Recovery from anaesthesia after a 30 min administration of Org 25435 was slow (13.7 min). Pharmacokinetic modelling suggests that the context sensitive half-time of Org 25435 is slightly shorter than that of propofol in infusions up to 20 minutes but progressively longer thereafter. CONCLUSIONS: Org 25435 is an effective intravenous anaesthetic in man at doses of 3 and 4 mg/kg given over 1 minute. Longer infusions can maintain anaesthesia but recovery is slow. Hypotension and tachycardia during anaesthesia and slow recovery of consciousness after cessation of drug administration suggest this compound has no advantages over currently available intravenous anaesthetics

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans
    corecore