10 research outputs found

    Variation in the human soluble epoxide hydrolase gene and risk of restenosis after percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restenosis represents the major limiting factor for the long-term efficacy of percutaneous coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been described to play a role in the pathogenesis of restenosis. We investigated whether the <it>EPHX2 K55R </it>polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a potential correlation of the <it>EPHX2 K55R </it>variant to an increased risk of hypertension was analysed.</p> <p>Methods</p> <p>An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls. From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.</p> <p>Results</p> <p>In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified as late lumen loss as well as lumen re-narrowing ≥ 50%.</p> <p>Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A 82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension was found.</p> <p>Conclusion</p> <p>The results of the present study indicate that the <it>EPHX2 K55R </it>polymorphism is not associated with restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not serve as a predictor for risk of CHD or restenosis after PCI.</p

    Heavy chain single-domain antibodies to detect native human soluble epoxide hydrolase

    No full text
    The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer and other diseases. However, there is not a simple, inexpensive and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal-variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the ELISA and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney and lung). The VHH based ELISA appears to be a new reliable method for monitoring the sEH, and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research

    Aging, Estrogen Loss and Epoxyeicosatrienoic Acids (EETs)

    Get PDF
    Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system

    Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

    Get PDF
    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol: epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment
    corecore