16 research outputs found

    Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines

    Get PDF
    Splice Variant 1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor, found in a wide range of human cancers and established human cancer cell lines, is a functional receptor with ligand-dependent and independent activity. In the present study, we demonstrated by western blots the presence of the SV1 of GHRH receptor and the production of GHRH in MDA-MB-468, MDA-MB-435S and T47D human breast cancer cell lines, LNCaP prostate cancer cell line as well as in NCI H838 non-small cell lung carcinoma. We have also shown that GHRH produced in the conditioned media of these cell lines is biologically active. We then inhibited the intrinsic production of GHRH in these cancer cell lines using si-RNA, specially designed for human GHRH. The knocking down of the GHRH gene expression suppressed the proliferation of T47D, MDA-MB-435S, MDA-MB-468 breast cancer, LNCaP prostate cancer and NCI H838 non-SCLC cell lines in vitro. However, the replacement of the knocked down GHRH expression by exogenous GHRH (1–29)NH2 re-established the proliferation of the silenced cancer cell lines. Furthermore, the proliferation rate of untransfected cancer cell lines could be stimulated by GHRH (1–29)NH2 and inhibited by GHRH antagonists MZ-5-156, MZ-4-71 and JMR-132. These results extend previous findings on the critical function of GHRH in tumorigenesis and support the role of GHRH as a tumour growth factor

    Metabolic and Hormonal Changes After Laparoscopic Roux-en-Y Gastric Bypass and Sleeve Gastrectomy: a Randomized, Prospective Trial

    Get PDF
    BACKGROUND: The mechanisms of amelioration of glycemic control early after laparoscopic Roux-en-Y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) are not fully understood. METHODS: In this prospective, randomized 1-year trial, outcomes of LRYGB and LSG patients were compared, focusing on possibly responsible mechanisms. Twelve patients were randomized to LRYGB and 11 to LSG. These non-diabetic patients were investigated before and 1 week, 3 months, and 12 months after surgery. A standard test meal was given after an overnight fast, and blood samples were collected before, during, and after food intake for hormone profiles (cholecystokinin (CCK), ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY)). RESULTS: In both groups, body weight and BMI decreased markedly and comparably leading to an identical improvement of abnormal glycemic control (HOMA index). Post-surgery, patients had markedly increased postprandial plasma GLP-1 and PYY levels (p > 0.05) with ensuing improvement in glucose homeostasis. At 12 months, LRYGB ghrelin levels approached preoperative values. The postprandial, physiologic fluctuation returned, however, while LSG ghrelin levels were still markedly attenuated. One year postoperatively, CCK concentrations after test meals increased less in the LRYGB group than they did in the LSG group, with the latter showing significantly higher maximal CCK concentrations (p > 0.012 vs. LRYGB). CONCLUSIONS: Bypassing the foregut is not the only mechanism responsible for improved glucose homeostasis. The balance between foregut (ghrelin, CCK) and hindgut (GLP-1, PYY) hormones is a key to understanding the underlying mechanisms

    The Immunohistochemical Expression of Growth Hormone–Releasing Hormone Receptor Splice Variant 1 Is a Favorable Prognostic Marker in Colorectal Cancer

    No full text
    Hypothalamic growth hormone (GH)-releasing hormone (GHRH) regulates the release of GH from the pituitary gland. The receptors for GHRH (GHRH-R) are expressed predominantly in the pituitary. Recent evidence demonstrates that splice variants of the GHRH receptor are also expressed in several nonpituitary tissues, both normal and tumoral, as well as in cancer cell lines. The aim of this study was to investigate the expression of the splice variant 1 (SV-1) of GHRH-R in colorectal cancer (CRC). Seventy patients who underwent partial colectomy for CRC were enrolled in the study. Immunohistochemical expression of SV-1 was studied in paraffin-embedded sections of patient tumor tissue. A cytoplasmic supranuclear expression of SV-1 was observed in CRC as well as in the normal colon mucosa. Tumor grade and pathological stage were negatively correlated with expression of SV-1 (P = 0.012 and P = 0.013, respectively). CRCs metastatic to the liver showed a lower expression of SV-1 than did primary tumors, but this difference was not statistically significant. Kaplan–Meier and Cox univariate survival analyses indicated an improved survival time in patients with high SV-1 compared with those with low GHRH-R expression, but this difference was not statistically significant. The immunohistochemical expression of SV-1 seems to be a favorable prognostic factor in CRC

    Laparoscopic greater curvature plication in morbidly obese women with type 2 diabetes : effects on glucose homeostasis, postprandial triglyceridemia and selected gut hormones

    No full text
    Background Laparoscopic greater curvature plication (LGCP) is an emerging bariatric procedure that reduces the gastric volume without implantable devices or gastrectomy. The aim of this study was to explore changes in glucose homeostasis, postprandial triglyceridemia, and meal-stimulated secretion of selected gut hormones [glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), ghrelin, and obestatin] in patients with type 2 diabetes mellitus (T2DM) at 1 and 6 months after the procedure. Methods Thirteen morbidly obese T2DM women (mean age, 53.2 ± 8.76 years; body mass index, 40.1 ± 4.59 kg/m2) were prospectively investigated before the LGCP and at 1- and 6-month follow-up. At these time points, all study patients underwent a standardized liquid mixed-meal test, and blood was sampled for assessment of plasma levels of glucose, insulin, C-peptide, triglycerides, GIP, GLP-1, ghrelin, and obestatin. Results All patients had significant weight loss both at 1 and 6 months after the LGCP (p ≤ 0.002), with mean percent excess weight loss (%EWL) reaching 29.7 ± 2.9 % at the 6-month follow-up. Fasting hyperglycemia and hyperinsulinemia improved significantly at 6 months after the LGCP (p  0.05). Postprandial ghrelin plasma levels decreased at 1 and 6 months after the LGCP (p < 0.0001) with no significant changes in circulating obestatin levels. Conclusion During the initial 6-month postoperative period, LGCP induces significant weight loss and improves the metabolic profile of morbidly obese T2DM patients, while it also decreases circulating postprandial ghrelin levels and increases the meal-induced GIP response
    corecore