10 research outputs found

    A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry). Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties.</p> <p>Results</p> <p>We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1) measure the concentrations of extracellular species and biomass, 2) convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency.</p> <p>Conclusion</p> <p>This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure can be used as an off-line analysis of previously collected data, providing an insight into the dynamic behaviour of the organism. It can be also profitable to the on-line monitoring of a running process, mitigating the traditional lack of reliable on-line sensors in industrial environments.</p

    Inclusion of maintenance energy improves the intracellular flux predictions of CHO

    Get PDF
    Chinese hamster ovary (CHO) cells are the leading platform for the production of biopharmaceuticals with human-like glycosylation. The standard practice for cell line generation relies on trial and error approaches such as adaptive evolution and high-throughput screening, which typically take several months. Metabolic modeling could aid in designing better producer cell lines and thus shorten development times. The genome-scale metabolic model (GSMM) of CHO can accurately predict growth rates. However, in order to predict rational engineering strategies it also needs to accurately predict intracellular fluxes. In this work we evaluated the agreement between the fluxes predicted by parsimonious flux balance analysis (pFBA) using the CHO GSMM and a wide range of 13C metabolic flux data from literature. While glycolytic fluxes were predicted relatively well, the fluxes of tricarboxylic acid (TCA) cycle were vastly underestimated due to too low energy demand. Inclusion of computationally estimated maintenance energy significantly improved the overall accuracy of intracellular flux predictions. Maintenance energy was therefore determined experimentally by running continuous cultures at different growth rates and evaluating their respective energy consumption. The experimentally and computationally determined maintenance energy were in good agreement. Additionally, we compared alternative objective functions (minimization of uptake rates of seven nonessential metabolites) to the biomass objective. While the predictions of the uptake rates were quite inaccurate for most objectives, the predictions of the intracellular fluxes were comparable to the biomass objective function.COMET center acib: Next Generation Bioproduction, which is funded by BMK, BMDW, SFG, Standortagentur Tirol, Government of Lower Austria and Vienna Business Agency in the framework of COMET - Competence Centers for Excellent Technologies. The COMET-Funding Program is managed by the Austrian Research Promotion Agency FFG; D.S., J.S., M.W., M.H., D. E.R. This work has also been supported by the PhD program BioToP of the Austrian Science Fund (FWF Project W1224)info:eu-repo/semantics/publishedVersio
    corecore